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Abstract

Thor is a new object-oriented database management system (OODBMS),
intended to be used in heterogeneous distributed systems to allow pro-
grams written in different programming languages to share objects in a
convenient manner. Thor objects are persistent in spite of failures, are
highly likely to be accessible whenever they are needed, and can be struc-
tured to reflect the kinds of information of interest to users. Thor combines
the advantages of the object-oriented approach with those of database sys-
tems: users can store and manipulate objects that capture the semantics
of their applications, and can also access objects via queries.

Thor is an ongoing project, and this paper is a snapshot: we describe
our first design and a partial implementation of that design. This design
is primarily concerned with issues related to the implementation of an
OODBMS as a distributed system.



1 INTRODUCTION

Distributed systems contain different kinds of computers, and users write programs
in different programming languages. The programs have persistent data that they
need to share. This paper describes a new system called Thor that is intended to
provide a convenient sharing mechanism.

Thor allows users to store and manipulate objects that capture the semantics of
their applications. Users can access these objects by high level path names, by
navigation, and also by means of queries.

Thor provides users with a universe of persistent objects. Objects in the universe
can refer to one another, so that useful object structures, such as graphs and trees,
can be constructed. All accesses to Thor objects occur within atomic transactions
so that objects can remain consistent in spite of concurrency and failures.

To support heterogeneity Thor provides a language-independent type system that
allows programs written in different programming languages to share data. The type
system is hierarchical to support program evolution. Thor objects are abstract and
encapsulated: each object has operations (or methods) that can be used to interact
with it. Users can extend the type system by defining new, abstract types. A type is
defined by a specification; specifications are independent both of any programming
language used to access the type’s objects and of the language used to implement
the new type.

Thor provides a persistent root and high-level path names that can be used to name
objects relative to the root. The root provides the basis for persistence: All objects
accessible (directly or indirectly) from the root persist. If a persistent object ceases
to be accessible, it will be garbage collected. Persistent objects are stored reliably,
so that with high probability they will not be lost in the case of failures, and they
are highly-available, so that they are highly likely to be accessible when needed.
High availability and reliability are supported by a novel implementation strategy
based on replication. In addition, Thor supports secure sharing by allowing users
to define access control for objects.

Thor is a distributed system in which objects are stored at server nodes that are
distinct from the machines where client programs reside. Nevertheless, it will pro-
vide clients with fast access to objects. Thor front ends run at client machines to
cache and prefetch objects and to run operations on objects locally, thus reducing
delay as observed by the clients. This architecture provides high performance and
also scalability, since front ends offload work from the servers and extra servers can
be added to accommodate increased load.

The Thor data model is a unique synthesis of ideas from programming languages
and databases. Unlike many systems [Atkinson, 1983, Richardson, 1987, Wein-
reb, 1988, Nettles, 1992], it is language-independent rather than being embedded
in a particular programming language. It provides access to object through both
navigation and queries (as opposed to conventional database systems (e.g., [Stone-
braker, 1990]) that support only queries). Furthermore, it supports full indexing
for queries over sets of abstract objects. as opposed to the more limited techniques
in [Bertino, 1989, Maier, 1986, Stonebraker, 1990, Zdonik, 1988]. Concurrency con-

trol and recovery are provided for individual objects (unlike many other systems



such as [Atkinson, 1983, Haskin, 1987]); furthermore programmers can control the
granularity of concurrency control and recovery (the techniques in [Weihl, 1985] are
being extended here). Unlike all other systems, it provides highly-available access
to persistent objects. Finally, its implementation is fully distributed; not only are
clients separated from servers, but the servers themselves are distributed.

Thor is an ongoing project, and this paper is a snapshot: we describe our first design
and a partial implementation of that design. That design emphasizes issues related
to the implementation of an OODBMS as a distributed system. We are currently
working on a second design and a different implementation.

In the next section, we sketch the basic system architecture. Subsequent sections
discuss the elements of this architecture in more detail.

2 SYSTEM ARCHITECTURE

Thor is intended to run in an environment of computing nodes connected by a
network. Some of these nodes are Thor servers, which store the objects in the Thor
universe. Others are client nodes where users of Thor run their programs. Although
it is possible that a single node might act as both a server and a client, the common
case is for client and server nodes to be distinct; we assume this separation in the
remainder of this discussion.

The Thor system runs on both clients and servers. It runs front ends (FEs) at
the client nodes, and back ends (BEs) and object repositories (ORs) at the servers.
Users always interact with Thor via an FE, which typically resides at the user’s
workstation. The FE makes use of BEs and ORs to carry out client requests. The
FEs and BEs understand types and perform operations. The ORs are concerned
only with managing the storage for the persistent objects.

Every persistent object resides at one of the ORs. Usually this is the OR selected
when it first became persistent. An object can move from one OR to another under
user control, although we expect this to be rare. Each OR runs at one or more
servers, and its objects are replicated at those servers (see Section 2.4).

There are two major obstacles to achieving good performance in such a distributed
system: (1) the delay inherent in having clients and servers at distinct nodes, and
(2) high load at servers, which slows down their response to requests. Below we
discuss our approach to overcoming these obstacles.

When a user asks the FE to perform an operation on an object, the system will
not run well if doing the operation always involves a remote access, e.g., to the OR
that stores the object. The delay is not so bad if the operation involves a significant
amount of computation. More typically, however, operations will be short relative
to the network delay, so we would like to avoid the delay.

The situation is especially difficult in Thor because we assume that there are many
servers and the servers are geographically distributed. Although we expect most
objects used in a client application to reside at a single OR that is physically close to
the client node (e.g., on the same local area net), an application might use objects
from several ORs, some of which are far away from the client.



Delay can be masked in one of two ways: by caching objects at the FE, so that
operations can usually be executed at the FE without the need for remote access,
or by combining a number of calls into a larger “combined operation” that can be
performed at an OR, so that the cost of the remote access can be amortized across
several calls.

The other performance issue is reducing the load at the servers. Work in distributed
file systems has shown that servers are the critical resource in a distributed system
like ours, and that the way to improve system performance is to offload work from
servers to clients [Howard, 1988, Nelson, 1988]. The analog in our system is again
caching at the FEs and running the operations there.

Therefore we do most client requests at the FEs. FEs cache copies of objects from
the ORs. When a client executes an operation, the FE runs it, fetching objects from
the ORs if necessary. We hope that fetching will usually not be necessary because
the objects that are needed are already cached at the FE. We discuss techniques
that improve the likelihood of hitting in the cache in Section 2.1.

In our first design, all operations run at FEs (with the exception of queries as
discussed further in Section 2.5). Ultimately, however, we may run some operations
at servers, in the BEs; this will allow us to use the “combined operations” method
of improving performance. (For example, an operation to look up a multipart
pathname could run at the BE.) We have yet to do a detailed design of BEs, so we
do not discuss them further in this paper.

2.1 CLIENTS AND FRONT ENDS

In this section and subsequent sections, we present our first design for Thor and
describe a partial implementation of that design (called TH and described in detail
in section 3). To distinguish between capabilities that have been implemented and
those that have only been designed, we use the present tense in describing the former
and the future tense in describing the latter.

2.1.1 Starting Up

As mentioned, clients always interact with Thor via an FE. When a client program
begins a session with Thor, the first step is to create or connect to an FE for the
client. Each FE acts on behalf of a single client principal (although it could be used
by several client processes). An FE will be authenticated, both in its own right,
and on behalf of the client principal, to the ORs with which it interacts; we plan to
use the Kerberos authentication service [Steiner, 1988] for this. Limiting an FE to
a single client principal helps in satisfying our security requirement.

Usually the FE resides at the client workstation but it could run elsewhere, e.g., if
the client machine is very small, or its system is inadequately secure. Typically, the
client program runs in a separate address space from the FE, so that errors in the
client program cannot cause the FE to malfunction. However, if client programs
are written in a type-safe language, such as ML [Milner, 1990] or CLU [Liskov,
1984], we can run them in the same address space as the FE. Such an organization
will provide better performance because it avoids the cost of inter-process calls. To
reduce delay when the client and FE run in different processes, we plan to investigate



client “combined operations” as a way of amortizing the cost of the FE call over a
larger unit of work. Combined operations might be extracted from the client code
by means of a preprocessor.

As part of starting a session, a client will be able to indicate an initial “setup.” This
setup will initialize the cache at the FE to contain useful objects (e.g., a part of the
database for the client application and implementations of the types used by the
application) so that we can avoid a lengthy startup transient. We are investigating
means for users to indicate what such a setup should be. The client would not be
delayed until the entire setup arrives at the FE; rather. the FE will use the setup
information to prefetch information in the background.

2.1.2 Computation at the Front End

The client program interacts with Thor by executing Thor commands, e.g., to
start and terminate transactions, and to run operations. In our prototype, each
client transaction is carried out at a single FE; we plan to investigate multi-FE
transactions later, and we will also look at the question of having Thor be a player
in a larger environment in which transactions span many databases.

Client programs typically refer to objects by means of handles. These are names
created by the FE and given to the client program whenever an operation called by
a client returns a reference to an object. Handles are meaningful only with respect
to an FE, and only for the duration of the current session.

When a client calls an operation, the FE begins by doing type-checking: the ar-
guments (handles and values) must be of the types expected by that operation.
This type checking takes account of the type hierarchy: if a formal is of type T,
the corresponding actual argument must be of some type S, where S is a subtype
of T. Then the FE runs the operation; that operation may call other operations,
but these calls do not need to be type-checked because the checking was done at
compile time.

2.1.3 Interacting with the Object Repositories

In running the operation, the FE may discover (in a way that we describe shortly)
that some required item (e.g., an object, or the code of an operation) is not in its
cache. In this case it must fetch that item from an OR. A fetch returns a block
containing the requested object and also a number of other objects that are related
to it. In other words, we do not fetch single objects, but rather we fetch them in
groups.

Fetching in groups is important because it can enable us to “prime” the cache by
filling it with objects that are likely to be used shortly; it also gives us a way of
dealing with small objects effectively. One of the major challenges of the implemen-
tation is getting the blocks right so that the objects brought over really are likely to
be used. We are planning to investigate a number of prefetching strategies. Some
of these are fairly static, e.g., when an object is stored at an OR, it is stored close
to related objects on disk; a block could thus contain objects that are close to one
another on disk. An example of a more dynamic strategy is to have the FE indicate
in the fetch command other items of interest, e.g., if the required object x refers to



n others, the FE could indicate that the ith and the kth are also of interest. An
interesting research question is how an FE might know what other objects are of
interest: does this information come from a client combined operation, or is there
some other way that a client, or a Thor program (coded in our implementation
language), indicates this?

A block need not be sent to the FE as a single unit, but rather it can be streamed
across (as in Mercury [Liskov, 1988]). As the objects arrive at an FE, they are
copied into the FE virtual memory space, and any object references they contain,
which are expressed in OR terms as orefs (see Section 2.2), are changed to FE
virtual memory addresses, i.e., we are “swizzling” pointers. Our scheme here has
similarities to Mneme [Moss, 1990] and also to other object-oriented systems such as
[Kaehler, 1990]. If we encounter a reference to an object that does not reside at the
FE, we create a surrogate for it.' The surrogate contains within it the object’s OR
and oref so that if we need to fetch it later, we know where to find it. A surrogate is
only large enough to hold the information to find the real object, not large enough
to hold the object. When an object for which there is a surrogate arrives at the
FE. we modify the surrogate to refer to the object; this link will be snapped at the
next FE garbage collection.

Using a surrogate is what causes the FE to “discover” that an object is not present
in the cache, causing an “object fault” to occur. The FE will be able to avoid such
faults by prefetching. For example, if it creates a handle for an object, and that
object is a surrogate, it will be able to prefetch the object, its type information,
and its code, if necessary, since it is reasonable to assume that these items will
be needed shortly. This prefetching will be able to take place in the background,
without incurring a delay that is visible to the client.

As operations run, they may create new objects. Some of these objects never become
persistent; they are used during the session only as temporaries. Such objects reside
entirely at the FE. Other new objects become persistent (by having references to
them stored into persistent objects). Newly persistent objects are sent to ORs when
the transaction that made them persistent commits. Unless specifically instructed
otherwise at commit time, Thor stores each newly persistent object at the OR of the
object that was modified to make it persistent, and stores the new object “close”
to the modified object or components of the modified object so that subsequent
fetches will work well.

Non-persistent objects have neither orefs nor oids (see Section 2.2); if the objects
become permanent, orefs and oids are assigned at the ORs during the commit
where the objects become permanent. The result of a successful commit includes
information allowing a front end to fix up its copies of those objects to include the
new data.

The roots of the FE are the handles that have been given to the client. The
client can optionally inform the FE of its current set of handles, either by listing

!A surrogate in Thor is similar to a proxy object in Bellerophon [Dickman, 1992]
although some details of implementation are different because Bellerophon and Thor make
different assumptions about the structure of the underlying distributed system. A Thor
surrogate is also conceptually similar to a surrogate as used in [Fang, 1992] although again
the details are different.



the handles it still has or by listing the handles that it has determined it will
not use in the future. When so informed, the FE runs a garbage collector that
discards all objects not accessible from the client’s current handles. The FE will
eventually have a true garbage collector that runs whenever there is no more free
space. Since prefetching may bring over large numbers of reachable but unused
objects, reclaiming inaccessible objects may not free enough space at the FE. We
may also need to shrink (that is, convert to surrogates) some accessible objects that
have not been used recently. We are investigating policies governing what objects
to shrink or discard as part of our work on prefetching strategies [Day, 1992].

2.2 OBJECT REPOSITORIES

The ORs provide storage for persistent objects. They send copies of objects to
FEs in response to fetch commands, and they commit transactions in response to
FE commands as described in Section 2.3. Periodically, an OR will do garbage
collection and discard any inaccessible objects as discussed below.

2.2.1 Fetching and Segments

An OR’s persistent objects are stored on disk, which is organized into segments.
Segments are variable length; each will be allocated contiguously on disk. Each
segment is intended to contain a group of related objects, i.e., a cluster [Gruber,
1992]. When asked to fetch an object, an OR responds by sending a block, as
previously described. Currently a block (the unit sent) is identical to a segment
(the unit stored), but we plan to experiment with more sophisticated mappings
between segments and blocks.?

Our goals for the fetch command are (1) to limit the number of disk accesses required
to carry it out, and (2) to respond with a block of related objects so that future
fetches can be avoided. A fetch command identifies the required object by giving
its oref. An oref is a name local to that particular OR. We divide an oref into two
parts: a segment id, or sid for short, and an object number. The sid is used to locate
the disk storage for the object’s segment by looking it up in the sid-table; we hope
to keep this table in primary memory. Then the entire segment is read from disk
(unless it is already in primary memory). The segment includes a table mapping
the object number to an offset within the segment. This second level of mapping
allows an object to move within the segment and change size without affecting its
oref.

We can ensure that at most one disk read per fetchis needed by simply stopping
the construction of a block at any time that another disk read would be needed. As
long as we have the object that was actually requested, we need not send any other
objects. Note that the OR will be able to keep information about relationships
between segments; once a segment has been fetched, it will be able to prefetch a
related segment from disk so that a subsequent fetch may be able to avoid any disk
accesses.

Disk performance at the OR will improve if objects are clustered well. Quite a bit of

?Building a block from one or more segments is similar to assembly as described in
[Maier, 1992].



work has been done on clustering strategies [Benzaken, 1991, Chang, 1989, Cheng,
1991, Shannon, 1991, Tsangaris, 1991, Gruber, 1992]. Our system is somewhat
different from others, however, because objects will be written to segments in the
background as explained in Section 2.4. Therefore, we will be able to reorganize
segments on the fly if this turns out to be a good thing to do. We plan to experiment
with techniques for evaluating the placement of objects in segment and reorganizing
segments (for example, as in [Palmer, 1990]).

2.2.2 Mobility and Identity

As mentioned earlier, every object has a unique identity. As long as an object stays
at the same OR where it first became persistent, the (OR-id, oref) is a sufficient
unique name (where the OR-id is a unique name for the OR). However, if the object
moves (which we expect to be rare), it may be referred to by more than one such
name (e.g., its name relative to the old OR and its name relative to the new one).
To ensure that the relative names will resolve to the same object, we assign each
object an OR-independent unique id called an oi:d when it becomes persistent.

When an object moves from one OR to another, it will leave behind an OR-surrogate
at the old OR. This surrogate contains the (OR-id, oref) for the object at its new
OR. A chaining technique like this is described in [Fowler, 1985]. We believe such
a technique will be suitable for our system, both because we expect chains to be
short, and because ORs will be highly available, so the probability of an FE being
unable to access an object because an OR on the path to the object is inaccessible
is very small. An alternative to the chaining technique that is also feasible is to use
a highly-available location service [Hwang, 1987].

In addition to surrogates caused by mobile objects, references from an object at one
OR to an object at another OR make use of OR-surrogates. Whenever an object
containing a reference to such a surrogate moves to an FE, we will endeavor to
prefetch the surrogate itself. The goal is to ensure that by the time the FE needs
to follow the reference, it knows which OR to ask for the object.

2.2.3 Roots

Recall that persistence is based on reachability from the root of Thor. The root
names a top-level directory that (conceptually) contains an entry for each OR. The
top-level directory is not stored in Thor; instead we find ORs via external systems
such as network name servers. Each OR contains a second-level directory.

The OR garbage collector will make use of three kinds of roots: the OR directory,
a table for each FE that is currently using the OR, and a table for other ORs. The
FE and OR tables contain lists of references used at the respective FEs and ORs.
The garbage collector will discard any objects not accessible from these roots. FE
references will be discarded when FEs terminate (at the end of client sessions), and
also as a result of FE communications (e.g., after an FE garbage collects, it will
inform ORs of what references it contains). To determine what to do with references
from other ORs, we will use a distributed garbage collection technique. We are
currently developing a distributed garbage collection algorithm based on [Hughes,
1985, Ladin, 1989, Shapiro, 1990]. We have not decided what local method to use,

but we are investigating a generational scheme with several spaces at each OR.



The FE table that acts as a root for garbage collection must contain the orefs of all
local objects that might be in use at the FE. In this way we will be able to avoid
nasty surprises, e.g., in which an object relied on by the client is discarded by the
FE garbage collector because it is thought to be persistent, and is also discarded
by the OR garbage collector because it is no longer persistent (due to the activities
of some other client). We will fill the FE table lazily, as transactions commit that
could cause objects to become apparently unreachable [Maheshwari, 1992].

2.3 TRANSACTIONS

So far we have not discussed how we achieve the atomicity properties—serializability
and totality—of transactions. Totality is easy to achieve: all modifications are
made at FEs and are installed in phase 2 of two-phase commit [Eswaran, 1976]
only if phase 1 is successful. Serializability is more difficult. The problem is that
operations are performed at FEs, yet we need to coordinate concurrent transactions
(from different FEs) at the ORs. One way to do this would be to have FEs set locks
at the ORs, but this would obviate the advantages of FE caching since it would
require communication with ORs even when there is a cache hit. Therefore we use
an optimistic scheme [Kung, 1981] that works as follows.

Every persistent object has a version number v# that is advanced each time a
transaction that modifies the object commits. Each object contains its current v,
which is copied to the FE along with the object. While a transaction runs at the FE,
the FE keeps track of what objects it reads and modifies. When the client requests a
commit, the FE sends the v#s of all the objects read by the committing transaction,
and the v#s and new versions of all the objects modified by the transaction, to an

OR.

If all objects used by the transaction reside at that OR, committing can be done
locally there; otherwise we need to do two-phase commit. (To make it more likely
that transactions concern just one OR, Thor stores objects at ORs where related
objects reside.) This OR acts as the coordinator of two-phase commit; the partic-
ipants are the ORs that manage the objects that were read and modified by the
committing transaction. In phase one, each participant OR checks the v#s used
by the committing transaction against the actual v#s of its objects; if any do not
match, the transaction must abort. If all participants agree to commit, the coordi-
nator selects a new v# larger than any of the current ones, and this is written into
all the modified objects along with their new versions in phase 2 (this information
is actually written to a log as explained in Section 2.4). Thus what we have is an
optimistic scheme using backward validation. The FE is informed about the new
v# in the reply from the coordinator; it can then update the v#s it has stored for
the modified objects.

We hope to run two-phase commit without requiring any disk 1/O. This will be
possible because our replication algorithm allows us to keep log records in volatile
memory (see Section 2.4). However, in phase 1 we do need access to the version
numbers of the objects used by the transaction. If ORs have very large volatile
caches, the necessary information is highly likely to be in primary memory; other-
wise, v#s can be stored in the FE tables.



2.3.1 Reducing Aborts

Although this concurrency control scheme is correct, it has the problem (as do all
optimistic schemes) of possibly leading to aborts that need not have happened in
a pessimistic scheme such as locking. Aborts in our system can come from two
places: stale data in caches. and actual conflicts between concurrent transactions.
To solve the first problem, we use invalidation: the OR notifies FEs when objects
in their caches become stale as a result of transaction commits. ORs use the infor-
mation in their FE tables to determine what invalidations are required. The front
end receiving an invalidation message shrinks the stale objects back to surrogates,
causing them to be refetched if needed. If the objects have been read by an active
transaction, the transaction is aborted before shrinking the objects.

We are looking at two ways to reduce the problems of concurrent transactions.
Our plan in both approaches is to move from an optimistic scheme to a locking
scheme when there is contention, because locking is known to work better in such a
case [Agrawal, 1987]. The first possibility is to switch from optimistic concurrency
control to locking for objects that are hot spots. The OR would determine when
this happens (e.g., because there had been contention at the object) and how long
the object continues to be “hot”. For hot objects, FEs would request locks before
doing operations. The second possibility is to do lazy locking, in which the FEs do
not wait to obtain locks, but instead notify the ORs about them in the background.
The information thus obtained could be used to abort transactions early when there
are conflicts (so that less work would be lost), to change which transactions abort
(e.g., we could abort a writer if its commit would invalidate a concurrent reader),
and to order commits intelligently (e.g., delaying commits of writers if they would
invalidate concurrent readers).

Note that we use objects as a basis of concurrency control rather than pages or
segments as has been done in most other systems [Deux, 1990, Haskin, 1987] because
using a larger granularity can lead to false deadlocks and spurious conflicts. In
addition, we plan to provide implementors of Thor objects with the ability to control
the granularity of locking, as is done in Argus [Weihl, 1985]. User control can lead to
better performance by decreasing conflicts and improving concurrency. The scheme
for indexes discussed in [Liskov, 1992] is an example.

2.4 REPLICATION

We are planning to use a primary copy scheme for replication [Oki, 1988]. This
scheme is an adaptation of one that we have been using in our work on the Harp
file system [Liskov, 1991]. Harp is a replicated Unix file system that is intended to
be used via a network file server such as NFS. Our motivation for building the file
system was partly that such a service would be useful and partly to make sure that
our replication method would be satisfactory. Our performance measurements to
date have been encouraging; our replicated system performs slightly better than an
unreplicated system on standard benchmarks.

Our primary copy scheme will work as follows: As mentioned, each OR will reside
at a number of servers; the OR’s objects will have multiple copies at these servers.
For each object, one of the servers that has a copy of that object will act as the



primary; others with copies will act as backups. Actually, objects will be distributed
in units of segments; a server will act as a primary (or backup) for all the objects in a
segment. The primary will handle all FE interactions (fetches and commits) for that
object. It will maintain a log in which it records information about commits, e.g.,
the new versions and v#s of modified objects, and will force the log to the backups
at appropriate places, e.g., at transaction prepare or commit. If the primary fails,
the backups and other servers of the OR will carry out a view change [El Abbadi,
1985, El Abbadi, 1986] and one of the backups will become the new primary.

All servers will have uninterruptible power supplies (UPS’s) in addition to disks;
the UPS’s protect against power failures, which are the most likely cause of a
simultaneous server crash. The UPS’s will allow us to view a record (such as a
commit record) as safely recorded in the log as soon as it resides in volatile memory
at the primary and backups; the log will be written to disk in the background. Thus
forcing a record to the log will require one message roundtrip; since the primary
and backups are typically located close to one another, this time is usually shorter
than a disk write. Records will not need to be kept in the log indefinitely: only
those records whose effects have not yet been recorded on disk at the primary and
backups will need to be saved. Thus, the log typically will be short.

When there is a failure, the view change algorithm will select a new primary and
backups for the object and will define the initial state of the new view. The initial
state is guaranteed to contain the log records of all prepared and committed trans-
action. This guarantee follows from the fact that log records are forced at critical
points (prepares and commits) and because views will always overlap in at least one
member. Therefore, the needed log records will be known to at least one member
of the new view. Other members of the new view will be brought up to date by
sending them any of these records they do not already have. Since logs will be short
(as discussed above), bringing the other members of the view up to date will not
take long, so failover is fast.

When there is a recovery, the recovering node is likely to be very out of date
(especially if it has been down for a long time). In this case we will bring it up
to date before doing the view change, in parallel with running the current view.
Only when its state is almost current will we do the view change; at this point little
information needs to be exchanged and again we will have fast failover.

One of the interesting implications of our replication method is that it will speed
up two-phase commit, since no writing to disk is required. In addition, since infor-
mation in the log is moved to disk in the background, the OR will be able to take
the time to organize segments as they are changed. For example, new objects can
be added to the appropriate segments, and if objects in a segment grow, we will be
able to reorganize the space to accommodate this. Therefore, we should be able to
put the right objects together in segments and thus obtain the benefits of reading
entire segments.

2.5 QUERIES AND INDEXES

The ability to identify objects by means of queries is an important property of
Thor. Queries introduce two new problems: (1) how to maintain indexes when the
set being indexed contains objects of abstract, user-defined types, and (2) where to



run the query.

Efficient index maintenance requires some way of recognizing when a particular
change to an object indicates that a particular index must change. In a database
system, changes that affect indexes are easy to recognize, since these are just in-
serts into indexed sets, and updates of tuples in indexed sets. When sets contain
abstract objects, however, the system no longer knows what constitutes an update,
and furthermore objects in an indexed set may contain references to other objects
whose modifications can affect an index for the set. We are currently investigating
techniques for solving these problems [Hwang, 1992]. Note that the solution must
take account of distribution: Changes to objects happen at FEs but indexes are
stored at ORs, and furthermore the right kind of concurrency control must be in
place.

We are also investigating several ways of running queries. If the set being queried
is large and the query results in a small number of selected objects, it is desirable
to run the query at the OR. However, if the queried set is not large, or if the query
results in lots of matches, or if many queries are run on the same set, it may be
better to move the set (or possibly just its index) to the FE and run the query
there.

Ultimately we plan to use a flexible approach in which the FE decides where to
run the query based on information available to it at that time. When a set object
is used at an FE, meta-data about the set is sent to the FE. but the elements of
the set are not. The meta-data includes information about indexes so that the
FE can make decisions about how to carry out the query most effectively. If the
FE decides to run the query at the OR, it sends a "match” command to the OR
indicating what index to use and what index value or values are of interest. The
OR responds by creating a new set containing the object that matched and either
sending a reference to it to the FE, or sending the new set to the FE. (It will be
possible to stream the elements of the new set to the FE so that the FE code can
start to use them before they all arrive.) Alternatively, the FE can request that
an index be sent to it, or that the set elements be sent (again the elements can be
streamed).

If the indexed set is distributed, i.e., its elements are stored at more than one OR,
the index will be distributed so that it has a component at each OR where there are
elements. The component will store the portion of the entire index that concerns
the elements at its OR. This organization will allow the FE to do the “matches” at
the different ORs in parallel; it will also allow for easy index maintenance as the
set and its elements change.

3 STATUS AND PLANS

We have implemented a partial prototype of Thor, called TH. TH is implemented
in Argus [Liskov, 1988b]. It is a distributed system in which clients run at different
nodes than ORs, and there are several ORs. We have built a veneer for Emacs Lisp
[Lewis, 1990] and Argus, and have written both a toy hypertext application and
a toy mail system on top of Emacs and TH. Several members of our group use a
shared calendar system (of local origin) called ical; we plan to implement a version



of this system to run on top of TH. We are currently designing veneers for C++
[Stroustrup, 1987] and CLOS [DeMichiel, 1987] and are working with groups who
have other real applications to test TH.

Abstract types in TH are defined in a stylized dialect of Argus, and all objects are
implemented in terms of a single underlying primitive object type called f_obj. An
f_obj is a variable-length heterogeneous array: it is essentially an Argus array with
tagged elements. A slot in an f.obj can hold an integer, boolean, character, string,
or reference. There is also a field for “self” that allows an object to refer to itself
before it has been allocated. References are constrained to occupy the same space
at the FE (where they are 32-bit VM addresses) and at the OR (where they are
32-bit orefs). References that require more bits are done by an indirection through
a surrogate, in a style similar to that of Mneme [Moss, 1990].

Argus stable storage was useful for getting the system up quickly, but our research
version of Argus limited the size of databases that we could build in TH. We have
moved most persistent store management into TH, delegating the details of disk
storage to the Unix filesystem for now.

TH does not implement our full design. The following features of Thor are not
yet in TH: replication, control of disk storage, real programming and specification
languages for Thor types, security and access control, distributed garbage collection,
queries, and indexes. In Thor, code is stored at the ORs and fetched to the FEs,
but TH statically links code into FEs.

We plan to add distributed garbage collection, queries and indexes, and object
mobility to TH. We also expect to compile our Thor language into TH abstract
type definitions (that is, in one mode the compiler will produce the appropriate
stylized Argus code as the object code). However, we do not plan to implement
replication, disk management, or access control in TH. It seems unlikely that we
will attempt to implement code objects in TH.

Implementing TH has allowed us to firm up and test some of our implementation
decisions. We plan to use TH as a test bed for studying various research issues, e.g..
prefetching mechanisms, indexing mechanisms, and distributed garbage collection
techniques. TH will also be used as a basis for some applications so that we can get
a better understanding of how well our design meets the needs of users.

We plan to begin implementing a full prototype of Thor soon. Performance and
portability are important goals of this implementation. We are likely to implement
it in either Modula-3 or C++. We will use Recoverable Virtual Memory [Mashburn,
1992] as our initial storage manager, then move to using our replication scheme.

We are also working now on the design of the Thor implementation and specification
languages, and at various extensions to the Thor model. For example, we are looking
at triggers and constraints, and considering support for very long transactions.
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