
Resolving the Integrity/Performance Conflict

Andrew C. Myers
andru@lcs.mit.edu

MIT Laboratory for Computer Science

Abstract

Future applications will require integrity of complex,
persistent data in the face of hardware and program fail-
ures. Thor [6], a new object-oriented database, offers
a computational model that ensures data integrity in a
distributed system without sacrificing expressiveness or
performance. Perhaps surprisingly, compiler technology
is important to making this work well.

1 Traditional Approaches

Currently, writing applications that share complex,
persistent data across a network is too hard, because
the underlying software substrate is not available.
No existing system combines high performance,
complete data integrity, and a sufficiently powerful
data model.

Allowing multiple applications to share complex
persistent data creates problems because of the de-
sire for protection. Increasingly, persistent data
contains semantic information. It may only be ac-
cessed in particular ways that ensure its integrity
is not violated. Data may be accessed by multiple
users, or shared across a network which can expe-
rience failures. Failures of hardware, or of users
to properly access objects, cannot be allowed to
compromise persistent data integrity.

The conventional approaches to providing these
services have been operating systems, databases,
and persistent programming languages. Each of

545 Technology Square, Cambridge, MA 02139, USA.
This research was supported in part by the Advanced Research
Projects Agency of the Department of Defense, monitored by
the Office of Naval Research under contract N00014-91-J-4136
and in part by the National Science Foundation under Grant
CCR-8822158.

these systems solves part of the problem just out-
lined. Unfortunately, none can provide a complete
solution. This paper presents an opinion about what
each conventional paradigm contributes and then
explains how, in this context, Thor solves the com-
plete problem.

1.1 Operating Systems: Firewalls

Operating systems have provided the traditional ap-
proach for the integrity of persistent data in the pres-
ence of potentially invalid accesses. In the most
common structure, the machine is separated into
two pieces: kernel space and user space. Only
a fixed and limited portion of the persistent data
can be fully accessed from user space: a file’s
contents. Other persistent information, such as di-
rectory structures and links, can only be accessed
through system calls, which provide a narrow inter-
face for crossing the protection boundary from user
space into kernel space.

The advantage of this design is that arbitrary op-
erations may be performed in user space, and so
user programs can be very fast as long as they are
not accessing persistent data. This fact leads to a
computational paradigm in which applications load
data from a file when they start, then save on exit.

Unfortunately, a file’s contents have no meaning
of their own — the meaning is completely defined
by each program that can access the file. Also lim-
iting is the fact that the operations provided by the
system calls are fixed and cannot be extended by the
user. Users often encounter a semantic mismatch
when they try to force the desired behavior of their
data into the fixed metadata framework provided by
the particular operating system in use.

The fact that the most successful operating sys-
tems (e.g. Unix) have not imposed a semantic



framework on file data, merely suggests that it is
better to have no built-in model at all than to im-
pose a fixed, limited model.

1.2 Persistent Programming Languages:
Encapsulation

A second aspect of handling complex, persistent
data is guaranteeing data integrity while allowing
the user to define new operations on this data. The
traditional approach to this problem has been the
use of safe programming languages, in which only
specified operations can be performed on data ob-
jects. Allowing object types to define the allowed
operations ensures integrity, but it may also be lim-
iting. For this reason, persistent programming lan-
guages are often object-oriented, or add features
for schema evolution, or have only runtime type-
checking. These features provide extensibility, but
cause safe, persistent programming languages to
suffer from performance problems.

1.3 Distributed Databases: Transactions

In the database community, users have been con-
cerned about maintaining data integrity in a dis-
tributed system. Data is stored in a number of
separate locations, each of which may fail or lose
contact with the others. The possibility of partial
failure may allow an update to the system to be
partially lost, leading to an inconsistent data state.
Even without hardware failure, inconsistent states
can also be generated by concurrent accesses by
different users.

To avoid inconsistent states, transactions have
been used to wrap up a set of complex operations
into a single, atomic update. Atomicity ensures that
the update is either performed completely, or else
fails and has no effect — leaving the system in the
previous consistent state.

The limitation of most current databases lies in
another domain — the simplicity of the data model.
In a relational database system, there is no satis-
factory way to encapsulate objects and control the
ways that they can be accessed or modified [1]. This
means that object integrity cannot be provided at a
sufficiently rich semantic level to allow arbitrary
and fine-grained sharing of data with other users.

2 Synthesis: Thor

Thor unifies these three approaches to persis-
tent data. Like operating systems, it has a user
space/kernel space partitioning that allows client
applications to run quickly in an unsafe domain.
However, in the protected “kernel space” runs a
safe, persistent, object-oriented programming lan-
guage called Theta. The presence of a powerful
programming language on the safe side of the pro-
tection wall means that system calls are no longer
limited to a fixed set of operations. Indeed, users
of Thor can define their own object operations and
even add new ones as the system is running. Fi-
nally, to provide support for distributed program-
ming, Thor has transactions that allow programs to
avoid the inconsistent object states that would arise
from hardware failure or concurrent modification.

2.1 Replacing the Operating System

Thor can be viewed as a new kind of operating
system. Instead of being restricted to a fixed set
of safe operations, users can define new operations
at will. Essentially, applications are allowed to
throw new code over the protection firewall and
have the kernel execute this code on their behalf.
Because the code is written in a safe programming
language, the kernel can execute it without concern
for protection.

By contrast, ordinary operating systems only al-
low extension of the kernel by recompiling and
rebooting the system — and no guarantees are
made about the comprehensibility of the old per-
sistent data in the new kernel. Spy [5], a system-
monitoring facility, allowed code to be placed into
the kernel, but for safety reasons the code could
only observe and could not change any behavior.

Like operating systems, Thor has a protection
boundary that is potentially expensive to cross. This
expense means that users will want to cross it as
little as possible. There are two obvious techniques
for minimizing boundary crossings.

One technique is just the file-system approach
of loading all data into user space, operating on it
there, and putting it back into Thor when done. This
approach is limiting, because the objects fetched
into user space must be completely accessible and



modifiable by every user who can access them at
all. Guaranteeing object integrity in the presence of
unrestricted access is essentially impossible. This
approach will work well only for simple object
structures that have no integrity constraints, or im-
mutable object structures where violation of object
constraints can only occur in the user space, and
cannot be observed by other users.

The other approach to minimizing protection-
boundary crossings is to move much of the appli-
cation’s computation into the safe side — in other
words, do computation in Theta. Operations that
violate object integrity are made impossible simply
by the nature of the safe programming language.
For most purposes, this is the reasonable way to
use Thor.

2.2 Don’t Slow Down Computation

An immediate concern about using Theta for com-
putation is that safe, object-oriented programming
languages with schema evolution, transactions, and
orthogonal persistence are thought to be too slow
to use for real computation. Slowness kills: appli-
cation programmers are notorious in their distaste
for slow programming languages.

Making Theta fast is critical to this computational
model. Speed will be achieved partly by using an
extension of the specialized compilation techniques
pioneered by SELF [3]. General-case code is com-
piled into fast, specialized versions that are selected
dynamically, based on the state of the Theta run-
time. Language features like object-oriented dis-
patch, transactions, persistent objects, and schema
evolution exact a minimal penalty when they are not
being used. Other work in progress will minimize
the impact of these features when in use.

Thor is similar in goals to other object-oriented
databases, and is perhaps most like GemStone in
overall design [2]. However, Thor’s internal lan-
guage has a static (though flexible) type system that
supports high-performance computation. Because
the internal language is fast, the safe-computation
model is workable. Object-oriented databases such
as ObjectStore [4] sacrifice some data integrity and
schema evolution flexibility to provide high perfor-
mance and orthogonal persistence.

3 Summary

Future applications will require integrity of com-
plex, persistent data in the face of hardware and
program failures. Thor offers a computational
model that ensures data integrity without sacrific-
ing expressiveness or performance. As with con-
ventional operating systems, a protection barrier
provides protection against invalid data accesses.
However, the protection barrier does not limit com-
plexity or destroy encapsulation of data objects. As
in databases, transactions provide reliability in the
face of hardware failures and concurrent accesses.
And Thor has a powerful object model that allows
persistent data to evolve. In addition to the usual
database considerations, the performance of this
system is tied to compiler technology that mitigates
the performance problems typically associated with
persistent programming languages.

References

[1] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dit-
trich, D. Maier, and S. Zdonik. The object-
oriented database system manifesto. In J. Kim,
J.M Nicholas, and S. Nishio, editors, Proc. of
the First International DOOD Conference, Ky-
oto, Japan, December 1989.

[2] Paul Butterworth, Allen Otis, and Jacob
Stein. The GemStone object database man-
agement system. Communications of the ACM,
34(10):64–77, October 1991.

[3] C. Chambers and D. Ungar. Customization:
Optimizing compiler technology for SELF, a
dynamically-typed object-oriented language.
In Proceedings of the SIGPLAN ’89 Confer-
ence on Programming Languages and Imple-
mentation, pages 146–160. ACM, July 1989.

[4] Charles Lamb, Gordon Landis, Jack Oren-
stein, and Dan Weinreb. The ObjectStore
database system. Communications of the ACM,
34(10):50–63, October 1991.

[5] B.W. Lampson. Hints for computer system de-
sign. IEEE Software, January 1984.



[6] Barbara Liskov, Mark Day, and Liuba Shrira.
Distributed object management in Thor. In
M. Tamer Özsu, Umesh Dayal, and Patrick
Valduriez, editors, Distributed Object Manage-
ment. Morgan Kaufmann, San Mateo, Califor-
nia, 1993.


