
Authentication in a Reconfigurable Byzantine

Fault Tolerant System

by

Kathryn Chen

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2004

c© Massachusetts Institute of Technology 2004. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

July 23, 2004

Certified by. .
Barbara Liskov

Ford Professor of Engineering
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Authentication in a Reconfigurable Byzantine Fault Tolerant

System

by

Kathryn Chen

Submitted to the Department of Electrical Engineering and Computer Science
on July 23, 2004, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Byzantine (i.e. arbitrary) faults occur as a result of software errors and malicious
attacks; they are increasingly a problem as people come to depend more and more on
online services. Systems that provide critical services must behave correctly in the
face of Byzantine faults. Correct service in the presence of failures is achieved through
replication: the service runs at a number of replica servers and as more than a third
of the replicas are non-faulty, the group as a whole continues to behave correctly. We
would like the service to be able to authenticate data. Authenticated data is data
that more than a third of the service is willing to sign.
If a long-lived replicated service can tolerate f failures, then we do not want the

adversary to have the lifetime of the system to compromise more than f replicas. One
way to limit the amount of time an adversary has to compromise more than f replicas
is to reconfigure the system, moving the responsibility for the service from one group of
servers to a new group of servers. Reconfiguration allows faulty servers to be removed
from service and replaced with newly introduced correct servers. Reconfiguration
is also desirable because the servers can become targets for malicious attacks, and
moving the service thwarts such attacks.
In a replicated service, we would like the service to be able to authenticate data.

Authenticated data is data that more than a third of the service is willing to sign.
Any party that knows a public key can verify the signature. Such a scheme is a
threshold signature scheme. The signers in a threshold signature scheme each know
some part of a secret. Because we would like to reconfigure the system, we need to
transfer the knowledge of the secret to the new servers and we want to disable the
old servers from signing in the future. Such a scheme is called secret refreshing.
This thesis describes TSPSS, a threshold signing and proactive secret sharing pro-

tocol. TSPSS can be used by asynchronous reconfigurable Byzantine fault tolerant
service replicas to perform threshold signing and secret refreshing. TSPSS uses com-
binatorial secret sharing, which involves an exponential number of shares in f . We
implement TSPSS to evaluate how well it scales and whether it performs well enough
to be used in practice. We find that TSPSS performs well enough to be used for

3

f = 1, is arguably good enough for f = 2, and is impractical for f = 3. Thus, a
better solution to this problem is needed.

Thesis Supervisor: Barbara Liskov
Title: Ford Professor of Engineering

4

Acknowledgments

I would like to thank my advisor, Barbara Liskov, for her guidance, patience, and

support. Our discussions helped me to refine the design presented in this thesis, and

her careful and critical comments significantly imporoved the content and presentation

of this thesis. I also wan to thank Rodrigo Rodrigues for all of the guidance he

provided. This thesis would not have been possible without Barbara and Rodrigo’s

supervision.

I would also like to thank all the people at the Programming Methodology Group

who were very supportive and contributed to a great work environment. Special

thanks to Sameer Ajmani and Ben Leong for their day-to-day help with development

tools and cheering me up on the rough days.

I have been very fortunate to have made great friends at MIT. I could not have

survived my undergraduate and MEng years without them. From lending an ear for

me to vent to, helping me to convert the graphs in this thesis to the proper format,

or keeping me company during a meal break, they have been very supportive and. I

would especially like to thank Justin Mazzola Paluska and Jeremy Wong.

Lastly, I would like to thank my mother, Kuei Chen. I feel truly blessed to have

her love and support. She is such an extraordinary woman and she inspires me to

always strive to do better.

5

6

Contents

1 Introduction 13

1.1 TSPSS Overview . 14

1.2 Thesis Outline . 16

2 System Model and Assumptions 17

2.1 Attacks and Failures . 17

2.2 Window of Vulnerability Definition 18

3 The TSPSS Protocol 21

3.1 Combinatorial Secret Sharing . 21

3.2 Threshold Signing . 22

3.2.1 Alternatives and Optimizations 24

3.3 Share Refreshing . 25

3.3.1 Alternatives and Optimizations 32

4 Implementation 35

4.1 Software Architecture . 36

4.2 Threshold Signing Interface . 36

4.3 Secret Refreshing Interface . 37

5 Evaluation 39

5.1 Threshold Signing . 40

5.1.1 Network Bandwidth Used . 40

5.1.2 Speed of Protocol . 40

7

5.2 Secret Refreshing . 43

5.2.1 Network Bandwidth Used . 43

5.2.2 Speed of Protocol . 45

5.2.3 Extrapolated Lower Bounds 50

6 Conclusion 55

A f and the Number of Shares 57

8

List of Figures

2-1 Relationship Between Runs, Shares, and Epochs 19

3-1 Splitting Old Shares and Constructing New Shares 26

3-2 Subshares Known to a Group of f Old and f New Nodes 30

4-1 Each server in a Byzantine fault tolerant service runs the TSPSS library

and it can invoke operations on the library through local unix sockets. 36

4-2 Signature Request/Reply Headers . 37

4-3 Refresh Header . 38

5-1 Refresh times for 5 runs with f = 1 48

5-2 Refresh times for 5 runs with f = 2 49

9

10

List of Tables

3.1 Combinatorial Secret Sharing for f = 1 22

5.1 Number of bytes sent by signature requesters and repliers during the

quick sign phase of the signing protocol and the full sign phase of the

signing protocol, based on calculations. 41

5.2 Signing Times (in msec) without Failures 41

5.3 Signing Times (in msec) with f Failures 42

5.4 Amount of time each replier spends computing partial signatures in a

full signing protocol, assuming each partial signature takes 385.75 ms

to compute. 43

5.5 Kilobytes sent by TSPSS old nodes and new nodes during the refresh-

ment protocol . 44

5.6 Minimum and maximum amount of bandwidth used(in KB) by the

BFT Agreement service, using the model that the number of bytes

sent per operation is (3f + 1)× (request size)+ reply size. Note that

these numbers represent the bandwidth used by all BFT nodes, instead

of per node . 45

5.7 Times for decrypting and proof generating and checking for Type I

machines . 51

5.8 Times for decrypting and proof generating and checking for Type II

machines . 51

11

5.9 Extrapolated lower bound refresh times (in sec) based on the time it

takes for old nodes to generate proofs and for new nodes to decrypt

and check proofs, using f +1 Type I machines and 2f Type II machines. 52

5.10 Extrapolated lower bound refresh times (in sec) based on the time it

takes for old nodes to generate proofs and for new nodes to decrypt

and check proofs, using all Type I machines. 52

5.11 Extrapolated lower bound refresh times (in sec) based on the optimistic

assumption that all nodes are correct and the time it takes for old nodes

to generate proofs and for new nodes to decrypt and check proofs, using

all Type I machines. 53

A.1 f , 3f + 1, l, and l′ . 57

12

Chapter 1

Introduction

Byzantine (i.e. arbitrary) faults occur as a result of software errors and malicious

attacks; they are increasingly a problem as people come to depend more and more

on on-line services. Systems that provide critical services must behave correctly in

the face of Byzantine faults. Correct service in the presence of failures is achieved

through replication: the service runs at a number of replica servers and as long as

enough replicas are non-faulty, the group as a whole continues to behave correctly.

In [2], Castro and Liskov propose a replication algorithm for Byzantine fault-

tolerance in asynchronous systems that offers good performance and strong correct-

ness guarantees provided that no more than 1/3 of the servers fail. The amount of

time an adversary has to compromise more than 1/3 of the servers is called the win-

dow of vulnerability. If no mechanism is used to reduce the window of vulnerability,

the window is the lifetime of the system. To reduce the window of vulnerability, Ro-

drigues and Liskov[10] propose to reconfigure the system, moving the responsibility

for the service from one group of servers to a new group of servers. Reconfiguration

allows faulty servers to be removed from service and replaced with newly introduced

correct servers. Reconfiguration is also desirable because the servers can become

targets for malicious attacks, and moving the service thwarts such attacks.

Secure reconfiguration requires a way for the current set of servers to be able to

prove to other processors in the system (e.g., processes running code that uses the

service) that it truly is the current server set. Otherwise, faulty servers such as those

13

previously removed from the system can pretend to be the current server set and

cause the system to behave incorrectly.

To achieve secure reconfiguration, the current server set can generate a signed

proof that allows anyone who knows a particular public key to verify the signature.

The corresponding private key is a secret and each of the current servers has a share

of the secret. The signature can be generated if and only if more than one third of

the current replica servers sign with their shares of the private key.

This thesis describes TSPSS, a threshold signing and proactive secret sharing pro-

tocol that addresses the authentication needs of a reconfigurable Byzantine fault

tolerant service that operates in an asynchronous environment. This thesis describes

how the current server set generates a signature and how the old server set transfers

the secret to the new server set.

Our secret refreshing protocol is based on the APSS protocol described by Zhou

et al in [14]. We improve on that work in two aspects. The first is that our refresh

protocol works across 2 sets of servers, with one set of servers transferring their col-

lective knowledge of the secret to another set of servers that previously did not know

about the secret. The second difference is that where agreement is needed, we use the

Castro and Liskov’s replication algorithm to achieve agreement. Castro and Liskov’s

replication algorithm [2] is a practical algorithm for state machine replication [11, 8]

that tolerates Byzantine faults. For the rest of this thesis, we will refer to the Castro

and Liskov replication algorithm as BFT.

1.1 TSPSS Overview

TSPSS is intended for use in a Byzantine fault tolerant system. In Byzantine fault

tolerant systems, the number of servers, n, running a service is usually 3f +1, where

f is the number of faulty servers that the system can tolerate within a window of

vulnerability. This is the same as saying that less than 1/3 of the servers running

the service can be faulty. It has been proven that n must be greater than 3f to

reach Byzantine agreement. Although TSPSS will work for n > 3f + 1, we assume

14

n = 3f + 1 for the rest of this thesis.

To tolerate f faulty servers, we want f or fewer servers to be unable to generate a

valid signature. Thus, at least one good server must sign in order for a valid signature

to be generated. We want a group of correct servers to be able to generate a valid

signature. In the cryptography literature, this type of signing scheme is an (n, k+ 1)

threshold signature scheme [5], with n = 3f + 1 and k = f . In an (n, k+1) threshold

signature scheme there are n shares of a private key and one corresponding public

key. A message signed by any k + 1 of the private keys can be verified by the public

key. A message signed by k or fewer of the private keys will not be verified by the

public key.

We want to combine a threshold signature scheme with a proactive secret sharing

scheme, with the threshold scheme’s private key, in its entirety, being the secret of an

(n, k + 1) proactive secret sharing, also with n = 3f + 1 and k = f .

An (n, k + 1) secret sharing [13] for a secret s is a set of n random shares such

that (i) s can be recovered with knowledge of k + 1 shares, and (ii) no information

about s can be derived from k or fewer shares. Share refreshing [5, 7] is where servers

periodically create a new and independent set of secret shares for the same secret,

replacing the old shares with the new shares. Secret sharing with share refreshing is

called proactive secret sharing.

Property (ii) of secret sharing ensures that f or fewer servers cannot reconstruct

the private key. Since our secret is a private key, we never want to reconstruct

the secret. To generate signatures without reconstructing the secret, each server’s

threshold signature private key must be derivable from the shares of the secret that

the server has.

When a new set of servers become responsible for the service, this new set of servers

will need to be able to generate a signature that corresponds to the same public key.

And, the old server set should no longer be able to generate a signature that can be

verified by the public key. Allowing new servers to sign can be accomplished through

secret refreshing from the old server set to the new server set with n = 3f + 1 and

k = f . Once the new servers have the new shares, correct old servers forget any

15

information that can be used to infer old or new shares. Once the 2f + 1 correct

old servers forget their shares, there are not enough old shares to produce a valid

signature.

1.2 Thesis Outline

The remainder of this thesis is organizes as follows. Chapter 2 describes the sys-

tem model, assumptions, and correctness conditions. In Chapter 3, we describe the

threshold signing and proactive secret sharing protocol. Chapter 4 describes how the

protocol is implemented. We then evaluate the costs of running TSPSS, in terms

of computation time and network bandwidth used, in Chapter 5. We present our

conclusions in chapter 6.

16

Chapter 2

System Model and Assumptions

Consider a system composed of a set of processors that communicate through a net-

work. For each window of vulnerability, there are n processors that are responsible

for the service during that period of time. While a processor is responsible for the

service, we call it a server. Once a processor is no longer responsible for the service,

it is no longer a server.

Servers hold the shares of a secret. Each processor is assumed to have an indi-

vidual public/private key pair. Each server is assumed to know the public key of all

other processors in the system. Cryptographic techniques are employed to provide

confidentiality and authenticity for messages. It is assumed that the adversary is

computationally bound and that the factoring problem and the discrete logarithm

problem are hard so that the adversary cannot subvert these cryptographic tech-

niques.

2.1 Attacks and Failures

TSPSS is intended for use in environments like the Internet, where failures and attacks

can invalidate assumptions about timing. Thus, we assume an asynchronous system

where there is no bound on message delay or processor execution speed. We assume

that the network through which the processors are connected is composed of fair links.

A fair link is a communication channel between processors that does not necessarily

17

deliver all messages sent, but if a processor sends sufficiently many message to a single

destination, then one of those message is correctly delivered. Messages in transit may

be read or altered by the adversary.

As we mentioned earlier, less than 1/3 of the servers in a window of vulnerability

can be faulty. A server is either correct or faulty. A faulty server can stop executing the

protocol, deviate from its specified protocol in an arbitrary manner, and/or corrupt

or disclose locally stored information. A correct server follows the protocol and does

not corrupt or disclose locally stored information. A server is considered correct in

a time interval τ if and only if it is correct throughout interval τ . Otherwise it is

considered faulty in time τ .

With the system model and assumptions described above, an adversary is allowed

to do any or all of the following in order to cause the most damage to the replicated

service:

• compromise and coordinate up to f faulty servers within any window of vulner-

ability

• delay messages or correct servers by arbitrarily finite amounts,

• launch eavesdropping, message insertion, corruption, deletion, and replay at-

tacks

2.2 Window of Vulnerability Definition

The window of vulnerability in TSPSS is defined in terms of events rather than the

passing of time. To give a precise definition for the window of vulnerability, we

assign version numbers (v0, v1, v2, ...) to shares, secret sharings, runs, and participating

service replicas. Each execution, or run, of TSPSS generates a new secret sharing. A

sharing is composed of the set of random shares which form a secret s:

• Servers initially store shares with version number v0.

• If a run is executed with shares having version number vold = vi, then this run

and the resulting new shares have version number vnew = vi+1.

18

���������
	���
����������	���
 � ������ �
 � � ����� �
 ����� �
 ���

���� �! �"�#

�$�� �! �%�#
 � �

Figure 2-1: Relationship Between Runs, Shares, and Epochs

• A secret sharing is assigned the same version number as its shares.

Run vnew starts when some correct server initiates run vnew locally. Run vnew

terminates locally on a correct server once the server has forgotten all information

pertinent to vold shares. Run vnew terminates globally at the earliest time t that the

run has terminated locally on each correct server that participated in run vnew.

An epoch vi is defined to be the interval from the start of the run vi to the global

termination of run vi+1. The relations between old and new runs, shares, and epochs,

and their surrounding runs, shares and epochs is illustrated in Figure 2-1. In a

successful attack, an adversary must collect f + 1 or more shares all with the same

version number. Since f + 1 or more servers must be compromised during the same

epoch in order to collect these shares, we define the window of vulnerability to be an

epoch.

19

20

Chapter 3

The TSPSS Protocol

In this chapter, we describe the TSPSS protocol. We first describe how to split up

the secret into shares. Then, we describe how to generate a signature using these

shares and how to refresh the shares so that new nodes learn new shares of the same

secret, which are independent from the old shares.

In describing the protocol, we assume that communications channels are secure

because authenticity and confidentiality can be achieved through signing and encrypt-

ing the messages. We will use nodes interchangeably with processors so that we can

use ni to stand for a node, and si to stand for a secret share.

3.1 Combinatorial Secret Sharing

The way we’re going to share a secret and achieve a threshold access structure is to

use the combinatorial secret sharing [6] technique described by Ito et al. We split the

secret up into l shares, where l =
(

3f+1

f

)

. A share is given a label from 1 to l. We

find all possible combinations of f nodes from our 3f + 1 nodes, and we label each

group of f nodes with a number from 1 to l. Then, a node ni gets a share si with

label t if node ni is not in a group with label t.

We give an example for f = 1. For f = 1, l = 4 so we have four shares: s1, s2, s3,

s4. We generate all possible groups of f = 1 servers and label them with numbers 1

to l (i.e., g1 = {n1}, g2 = {n2}, g3 = {n3}, g4 = {n4}). Then we give share s1 to all

21

index i shares si groups gi nodes given share si

1 s1 g1 = {n1} n2, n3, n4

2 s2 g2 = {n2} n1, n3, n4

3 s3 g3 = {n3} n1, n2, n4

4 s4 g4 = {n4} n1, n2, n3

Table 3.1: Combinatorial Secret Sharing for f = 1

nodes not in group g1, (i.e., nodes n2, n3, n4). Similarly, we give share s2 to all nodes

not in group g2, s3 to all nodes not in g3, and s4 to all nodes not in g4. Table 3.1

summarizes the results for f = 1.

Now, by construction,

• Each share is held by 2f+1 nodes.

• No set of less than f+1 nodes have all of the shares

• Any set of f+1 or more nodes will have all of the shares1

3.2 Threshold Signing

With combinatorial secret sharing, we can use the RSA cryptosystem to generate

threshold signatures. Normally, RSA has one key pair: a private key and a corre-

sponding public key. The public key is denoted as (N, e), where N = pq and p, q are

large primes of roughly the same size. Define φ ≡ (p− 1)(q− 1). The private key is d

where ed ≡ 1 mod φ and e is the public RSA exponent. To sign a message m, com-

pute signed message c = md mod N . To verify the message, compute m′ = ce mod N .

Since m′ = ce mod N = med mod N , and ed ≡ 1 mod φ, the signature is valid if and

only if m′ equals m.

The private key d is the secret we share combinatorially. As such, we must split

it into l shares: d1, d2,..., dl. We call a signature generated by one share of the secret

key a partial signature. The nice thing about RSA is that if the l shares sum to

1For any given share, only f nodes do not have the share, every other node has it. Then, for each

share, given a group of any f+1 of the 3f+1 nodes, at least one of the nodes has the share

22

d, then the product of all the partial signatures (i.e., ci = mdi mod N), is the RSA

signature that we expect in the normal scheme described above. I.e., if

d =
l
∑

i=1

di mod N (3.1)

then

c = md mod N =
l
∏

i=1

mdi mod N (3.2)

.

Thus, when starting the system, the trusted dealer generates the shares satisfying

the constraints posed by Equation 3.1 by picking random integers that sum to the

secret:

• For 2 ≤ i ≤ l, choose random integers di ∈ [−lN
2..lN 2]

• Compute d1 = d−
∑l

i=2 di

After generating the shares, give them to the nodes following the method described

in Section 3.1. We use di’s as the si’s discussed in Section 3.1.

Notice that each node has more than one share and that each share must be

used exactly once when generating a valid signature. We generate a valid signature

as follows. When asked to sign something, each node first determines whether the

message should be signed2. If the message should be signed, the node generates one

partial signature per share of the secret it holds. Then, the node sends all of the

partial signatures to the requester. Recall that each share is held by 2f + 1 nodes

of which at most f are faulty. Thus, the requester determines a partial signature

to be correct when it receives the same partial signature from f + 1 nodes. The

requester can compute the complete signature by multiplying together the l correct

partial signatures.

For example, for f = 1, node 1 asks itself and nodes 2, 3, 4 to sign. Then, node 1

receives replies from itself and nodes 2 and 3. Now, node 1 has the following partial

2See Section 4.2 for how node determine whether a message should be signed

23

signatures:

From node i c1 c2 c3 c4

1 X X X

2 X X X

3 X X X

Node 1 has received f+1 copies of each partial signature, thus knows that the partial

signatures it received are correct.

3.2.1 Alternatives and Optimizations

Since many nodes have the same share, if at least f + 1 of the nodes are behaving

correctly, it is unnecessary for them to all generate partial signatures. Generating

a partial signature means creating a digest of the message and taking that digest

to the power of the subshare (i.e., performing an exponentiation). Performing an

exponentiation is an expensive computation whereas adding partial shares together

is a cheap computation. Furthermore, sending all of the partial signatures back to

the requester takes up more network bandwidth.

Thus, here is an alternative we will call TS2. TS2 is an optimistic approach that

reduces the amount of computing and bandwidth used by receivers of sign requests.

In TS2, the requester picks a group of f + 1 nodes. We call this group gsign. The

requester asks for a signature from each node in gsign, also telling them which f

other nodes are in gsign. Then each node in gsign has a notion of which shares it is

responsible for when generating this signature. The way a node determines which

shares it is responsible for is that each node knows which shares every other node

has. Given the f other nodes in gsign, node ni is responsible for all the shares that ni

has, minus all the shares held by the nodes in gsign with smaller id numbers. A node

returns a signature generated by all the shares it is responsible for.

We give an example for f = 1. Suppose we choose gsign = {n1, n2}. Then, node n1

is responsible for all the shares it has (i.e., s2, s3, s4) because there are no nodes with a

24

smaller id number than 1. n2 is responsible for the shares it has (i.e., s1, s3, s4) minus

the shares node n1 has, leaving n2 responsible for s1. n1 returns (m
s2+s3+s4 mod N)

to the requester. n2 returns (m
s1 mod N) to the requester.

When the requester receives the f + 1 responses, it can multiply the signatures

together and check to see if the combined signature is valid. If the signature does not

verify, or f + 1 responses are not received within a set amount of time, the requester

can try the same thing again with another group of f + 1 nodes and keep trying

until it gets responses that verify. Since there are at least 2f + 1 correct nodes, the

requester is guaranteed to receive responses that verify if it tries enough times.

A hybrid of the full signing protocol described in Section 3.2 and TS2 can also be

used. In the hybrid form, the requester first asks for the TS2 form of signing from

f + 1 nodes. If the requester does not receive the f + 1 responses within a certain

amount of time, or the responses do not result in a valid signature, then instead of

trying the TS2 protocol again with another set of f +1 nodes, the requester initiates

the full signing protocol, where each node returns one partial signature per share it

has.

3.3 Share Refreshing

For transferring the secret from the old nodes to the new nodes, we describe the

protocol for a single run vi+1. We call run vi+1 the current run, shares and witnesses

with version number vi old shares and witnesses, nodes with shares of version number

v1 the old nodes, shares and witnesses with version number vi+1 the new shares and

witnesses, and nodes computing shares with version number vi+1 the new nodes.

Secret sharing involves two operations: split and reconstruct. The split oper-

ation generates a set of random shares from a secret s; we call these shares a sharing

of s. The reconstruct operation recovers s from certain sets of shares. A unique

label is associated with each share and sharing of s.

For share refreshing, we want to split each of the l old shares into l subshares.

From the subshares, we want to construct l new shares such that i) the secret s can

25

S
1

o l d S
2

o l d . . . S
l
o l d

S
1, 1

S
1, 2

S
1, l

S
2 , l

S
2 , 2

S
2 , 1

S
p

lit

R e c o n s t r u c t

S
1

n e w

S
2

n e w

S
l
n e w

…

…

…

… S
l, l

i

S
l, 1

S
l, 2

S
l, 3

...
......

Figure 3-1: Splitting Old Shares and Constructing New Shares

be reconstructed from the l new shares and ii) we can perform threshold signing with

the l new shares. The relation between the old shares and the secret is that the old

shares sum to the secret. So, the new shares will satisfy (i) and (ii) if the new shares

sum to the secret.

We will generate subshares for each share the same way we generated shares for our

secret in Section 3.1. For a share si, an old node generates subshares si,j’s by choosing

random integers si,j ∈ [−lN
2..lN 2] for 2 ≤ j ≤ l, and setting si,1 = si −

∑l
j=2 si,j .

To construct the new share snew
i , a new node computes snew

i =
∑l

j=1 sj,i. Figure 3-1

illustrated the relationship between the old shares and the new shares.

In share refreshing, each old node, for each share si that it holds, generates l

subshares. The holder then makes a subshare available to only those new nodes that

store a share constructed from that subshare. The old nodes are indexed from 1 to n

and the new nodes are also indexed from 1 to n. Which shares are held by an old node

and which are held by a new node is determined by the combinatorial secret sharing

described in Section 3.1 based on the nodes’ indices. As an example, for f = 1, nold
1

has shares sold
2 , s

old
3 , s

old
4 and nnew

1 has shares snew
2 , snew

3 , snew
4

Recall that by construction, each share is held by 2f + 1 nodes. If all nodes were

correct, then for each share of the secret, we can designate 1 holder of the secret to

generate subshares and send them to the appropriate new nodes. However, f of the

26

nodes can be malicious. And, malicious nodes can i) refuse to generate and send new

subshares or ii) generate incorrect subshares that do not reconstruct to the correct

new shares.

To tolerate faulty nodes that refuse to participate, we require that every node

generate new subshares for each of the shares it holds. However, this means that the

new nodes will receive more than one set of subshares per old share, and the new

nodes have to agree on which of the many sets of subshares for an old share to use

when constructing the new shares.

To achieve this agreement, we use the BFT agreement protocol. For each old

share, the BFT agreement protocol decides which old node’s set of subshares is used

to construct the shares for the next epoch.

However, having multiple nodes generate subshares for each share does not help

with the problem of a malicious node generating incorrect subshares. We use Feld-

man’s Verifiable Secret Sharing [3] to decide whether a node’s subsharing is correct.

We briefly describe Feldman’s scheme in relation to our shares and subshares. As

in the RSA cryptosystem, p and q are large primes and N = pq. Let g be a publically

known constant that is an element of high order in Z∗
N . The order of g is t, where

t is the least positive integer for which gt = 1 mod N . The basic idea behind this

mechanism is that for each share si, there is a public value wi ≡ gsi mod N , which

we call a witness. And, when a node generates subshares for a share, the node also

computes and makes available to all new nodes a proof pi,j for every subshare si,j. A

proof pi,j is defined to be:

pi,j ≡ gsi,j mod N (3.3)

From the homomorphic properties of the exponentiation function (i.e., gagb = ga+b)

we know a subsharing for share si is correct if the product of all the subshare proofs

for si is equal to the witness for si. i.e.,

wi =
l
∏

j=1

pi,j mod N (3.4)

In other word, if Equation 3.4 holds, and each proof is computed according to Equa-

27

tion 3.3, we know the subshares sum to the share because

wi = gsi mod N

= g
∑l

j=1
si,j mod N

=
l
∏

j=1

gsi,j mod N

=
l
∏

j=1

pi,j mod N

Thus, we use the proofs and witnesses to verify the validity of a node’s subshares.

An old node makes all of its proofs available to all of the new nodes. Each new node

checks to see that i) for each subshare si,j that the new node receives, the proof for

si,j was computed according to Equation 3.3 and ii) all the subshare proofs together

satisfy Equation 3.4. To ensure that all new nodes see the same proofs, the old nodes

write their proofs to the BFT agreement service. The new nodes read their proofs

from the BFT agreement service.

Since any group of f + 1 nodes have all the shares, any group of f + 1 new nodes

will receive all of the subshares for an old share. So, if f + 1 correct new nodes

confirm that an old node’s set of subshares is correct, then that old node’s subsharing

is known to be correct. When the BFT is deciding which old node’s set of subshares

to use for generating new shares, the BFT only considers those nodes’ sets that have

been said to be correct by 2f + 1 of the new nodes. The BFT needs to hear from

2f + 1 of the new nodes because f of those nodes may be faulty.

Note that the BFT is a replicated state machine. All the operations invoked on

the BFT is ordered, and the ordering is the same at all of the nodes running a BFT

service. Thus, for each share, the BFT chooses the subhshares of the first old node

to have that share and receive 2f + 1 confirmations from new nodes.

Once a correct set of subshares has been chosen for each old share, new shares

can be computed, as shown in Figure 3-1. While computing the new shares, the new

28

nodes also compute the new witnesses.

snew
i ≡

l
∑

j=1

sj,i (3.5)

wnew
i ≡ gsnew

i mod N ≡
l
∏

j=1

gsj,i (3.6)

Note that the indices for the subshares have been reversed. Also note that the gsj,i ’s

are the subshare proofs that have already been computed.

When a new node has computed the new shares and witnesses, it sends a computed

message to all the old nodes and the new nodes saying that it has computed the new

shares. Once an old node has heard from 2f + 1 new nodes that the new shares

have been computed, it can delete all its shares and subshares. Once a new node has

heard from 2f+1 new nodes (which can include itself) that the new shares have been

computed, the new node can delete all the subshares it received. The reason that old

nodes and new nodes wait to hear from 2f + 1 new nodes is because of the way we

constructed our secret shares. By construction, any group of f +1 share holders have

all of the shares. Since there may be a maximum of f faulty nodes, 2f +1 new nodes

guarantees that at least one correct new node has each share.

If a new node did not participate in the protocol for some reason (e.g., it was slow

or it was disconnected from the other nodes) and it needs to know about its shares,

it can ask other nodes for its shares and the new witnesses. The new node can trust

a witness once it receives f +1 copies of the same witness. And a new node can trust

its new share by verifying it against the witness. Nodes will only send a share si to

other nodes that are supposed to have si.

The way nodes makes shares and subshares available only to other appropriate

nodes is by encrypting those shares and subshares. To guard against replay attacks

where the adversary records the encrypted subshare messages, corrupts the receiving

node after the epoch has ended, then plays the messages to the now corrupted receiver

and learns those subshares, session keys are established and used to encrypt the shares

and subshares. Session keys are established at the beginning of each epoch and deleted

29

at the end of that epoch.

This scheme can tolerate f faulty old nodes and f faulty new nodes. The secret

is the sum of all the chosen subshares, as shown in Figure 3-2.

S
1

o l d S
2
o l d S

3
o l d S

4
o l d

S
1, 1

S
1, 2

S
1, 4

S
2 , 4

S
2 , 2

S
2 , 1

S
p

lit

R e c o n s t r u c t

S
1

n e w

S
2

n e w

S
4

n e w

…

S
3,2

…

… S
4 , 4

S
4 , 1

S
4 , 2

S
4 , 3

...
...

S
3

n e w

Figure 3-2: Subshares Known to a Group of f Old and f New Nodes

Any group of f faulty old nodes is missing at least one version vi share of the

secret. Any group of f faulty new nodes is missing at least one version vi+1 share of

the secret. Thus, a group of f faulty old nodes combined with f faulty new nodes

knows the secret minus some random number. For the combined group of f faulty

old node and f faulty new nodes, finding the missing subshare would be equivalent

to trying to guess the secret in the first place3.

We present the operations provided by the BFT agreement service:

write proofsproofs This operation is invoked by old nodes. The BFT knows which

node invoked this operation and stores the proofs in the space allocated for that

node.

read proofs(nodeID) This operation is invoked by new nodes, with nodeID speci-

fying which old node’s proofs the new node wants to read. The BFT returns

3The adversary is reduced to trying to find a number that matches the witness, or trying to find

the number that decrypts correctly.

30

the the proofs if they have been written. Otherwise, the BFT returns a NACK

indicating that the proofs are not currently available.

node ok(nodeID) This operation is invoked by a new node, with nodeID specifying

which old node’s subshares the new node is confirming to be correct. The BFT

knows which new node invoked this operation and marks the old node with

nodeID as being confirmed by the new node that invoked this operation. Once

2f+1 new nodes confirm an old node’s subshares, BFT goes through the shares

that the old node has. For each share, if no other old node’s subshares have

already been chosen, this old node’s subshares are chosen. Once the subshare

set for each share has been chosen, the BFT calculates the witnesses for the

new shares as shown in Equation 3.6.

read chosen This operation is invoked by new nodes. If a subshare set has been

chosen for all shares, the BFT returns which node’s subshare set has been

chosen for each share. Otherwise, the BFT returns a NACK indicating that the

subshare set for at least one share has not been chosen.

read new witnesses This operation is invoked by new nodes. If a subshare set has

been chosen for all shares, return the corresponding witnesses for the new shares.

Otherwise, the BFT returns a NACK indicating that the subshare set for at least

one share has not been chosen - thus, new witnesses cannot and have not been

calculated.

Now, we present the steps of the protocol.

Each old node does the following:

1. Notify the new nodes to begin the refreshment protocol, with a refresh config-

uration. A refresh configuration consists of the old nodes, the new nodes, and

the old witnesses. The refresh configuration is threshold signed.

2. For each share it holds, generate subshares and proofs.

3. Send encrypted subshares to the appropriate new nodes.

31

4. Write proofs to the BFT agreement service running at the new nodes by invoking

write proofs.

5. Wait for computed messages from 2f + 1 of the new nodes. Once received,

delete all shares, subshares, witnesses, and the session key for this epoch.

Each new node does the following:

1. Receive the begin message and refresh configuration. Upon verifying the thresh-

old signature, proceed to the next step.

2. Start running the BFT agreement service with the other new nodes.

3. Receive and store the subshares.

4. Read the subshare proofs from the BFT agreement service by invoking read proofs.

5. Check the proofs using Equations 3.3 and 3.4.

6. If the proofs for all of an old nodes’ subshares are correct, invoke the node ok

operation with this old node’s ID.

7. Check with the BFT service to see if there are chosen subshares for every

share (read chosen). If so, then compute new shares and read new witnesses

(read new witnesses). Once have new shares and witnesses, then delete all

subshares. If not, keep checking.

8. Send computed message to all other new and old nodes.

9. Once has received computed messages from 2f +1 new nodes, delete subshares

received and current session key. Create and distribute new session key.

3.3.1 Alternatives and Optimizations

As in the signing protocol, if all nodes are correct, it is unnecessary for them all

to generate subshares and corresponding proofs. Only one node needs to generate

subshares and proofs for each share. In refreshing, a node has to do a significant

amount of work for each share that it is responsible for. Thus, if we optimistically

assume that all nodes are correct, we assign each of the 3f+1 nodes to be responsible

for an equal number of shares and each node only creates and sends subshares and

32

proofs for the shares they are responsible for. To ensure that faulty nodes do not

prevent the refresh protocol from completing, a new node can wait for a set amount

of time after it receives the first refresh header to see if it receives and verifies all the

subshares it needs to compute its new shares. If a node does not receive and verify

all the subshares it needs after a set amount of time, it notifies all the old nodes that

it needs more subshares. If an old node receives more than 2f of these messages, it

will generate subshares and proofs for all the shares it has.

Another optimization is that instead of each new node directly telling the BFT

agreement service when it has verified the subshares for an old node, each new node

sends a signed confirmation back to the old node upon confirming that old node’s

subshares. Each old node collects 2f + 1 of these signed confirmations and submits

them to the BFT agreement service. If the 2f + 1 signatures verify, then the BFT

agreement service will consider that old node’s subshares to be correct. The BFT

agreement service then behaves as if it had received 2f + 1 node ok’s for that old

node.

33

34

Chapter 4

Implementation

The TSPSS protocol has been implemented (without alternatives and optimizations)

in 4799 lines of C++ code. It is meant to be used like a library by a Byzantine fault

tolerant service.

The implementation uses the Castro and Rodrigues implementation of the BFT

agreement protocol, the SFS[12] crypt library, and the SFS async library. The BFT

implementation provides agreement. The SFS crypt library extends the GNU MP

library[4], providing an implementation of public-key encryption/decryption and sign-

ing/verifying with the Rabin algorithm. The SFS async library provides an infras-

tructure for event driven programming.

The implementation deviates from the TSPSS protocol in two places. First, during

the refreshment protocol, the old nodes do not establish session keys for encryption.

They use the public-key the program is initialized with for encryption throughout the

lifetime of the program. Second, the threshold signing part of the implementation

implements a hybrid scheme similar to the one described in Section 3.2.1 where a node

first picks f + 1 nodes for signing and if that fails, initiates a full signing protocol.

In the implementation, the first f + 1 nodes are always the group of f + 1 chosen for

the first round of signing, which we will call the quick sign.

35

Application

TSPSS
Library

Application

TSPSS
Library

Application

TSPSS
Library

Application

TSPSS
Library

Figure 4-1: Each server in a Byzantine fault tolerant service runs the TSPSS library
and it can invoke operations on the library through local unix sockets.

4.1 Software Architecture

Since the TSPSS library is designed to be used by a Byzantine fault tolerant service,

we will call a service that uses the TSPSS library the TSPSS application. Each of

the TSPSS application servers runs the TSPSS library code on a separate process.

The application sends requests to and receives replies from the TSPSS library via

local sockets. This ensures that the TSPSS library can trust the messages from the

TSPSS application. Once the TSPSS application invokes a TSPSS library operation,

the TSPSS library carries out the necessary protocol steps (including ones involving

other nodes) before returning a reply to the application via another local socket if a

reply is specified. Figure 4-1 illustrates the software architecture.

4.2 Threshold Signing Interface

The TSPSS library supports two signing related operations:

register message Register a message with the TSPSS library. When the TSPSS

library running at a node ni receives sign requests from another node nj, the

TSPSS library at ni will only sign the message if that message has been regis-

tered by the TSPSS application at node ni.

sign message Ask the TSPSS library to initiate the threshold signing protocol for a

message m. The TSPSS library will contact other nodes and return a signature

36

struct sign_request_header{

int request_type;

int request_ID;

int length;

}

struct sign_reply{

int request_ID;

char signature[SIGNATURE_SIZE];

}

Figure 4-2: Signature Request/Reply Headers

to the TSPSS application once it has assembled the signature based on the

replies from the other server nodes running the TSPSS library.

A server running a Byzantine fault tolerant service registers the messages that

it is willing to sign using register message. It can request a signature using

sign message. If at least f other nodes have registered the same message, then

the TSPSS library at the sign message invoking node writes the successfully gener-

ated signature to another local socket for the application to read. Pseudo code for

the reply format is given in Figure 4-2. The request type can be register message

or sign message. The length is the length of the message to be registered or signed.

The sign request header is followed by the message to be registered or signed.

4.3 Secret Refreshing Interface

The TSPSS library supports two refresh related operations:

start refresh The node at which this operation is invoked has version vi shares and

will start a version vi+1 refresh run if one has not already been started.

get witnesses The node at which this operation is invoked currently has version vi

shares and will return version vi witnesses.

To start a secret refreshing run, each server running the TSPSS application sends

the TSPSS library running on the same node a start refresh message followed by

37

struct refresh_header{

int epoch;

pss_location old_replicas[NUMBER_OF_REPLICAS];

pss_location new_replicas[NUMBER_OF_REPLICAS];

char witness[NUMBER_OF_SHARES][SIGNATURE_SIZE];

char signature[SIGNATURE_SIZE];

}

struct pss_location{

char verification_key[VERIFICATION_KEY_SIZE];

sockaddr_in addr;

}

Figure 4-3: Refresh Header

the refresh header via a local unix socket. Thus, only code running on the same

machine can ask the TSPSS library to start a refresh. Since the TSPSS application

decides which nodes will be the service nodes in epoch vi+1, the new nodes and their

verification keys are included in the header. The TSPSS library code at those nodes

will in turn send the refresh header to the new service nodes via TSPSS ports to

initiate the TSPSS refresh protocol at the new nodes. To keep the interface for

threshold signing and refreshing clean, we include everything the new nodes need to

know in the refresh header so that it can all be threshold signed and sent to the new

nodes. The refresh header needs to be threshold signed so that the new nodes can

trust that this is a valid refresh request.

The refresh header includes the epoch started by this run of the refresh protocol,

the network location and verification key for each old and new node, and the wit-

nesses for version vi secret shares. The TSPSS application can request the witnesses

from TSPSS library, then register the entire header and request that the header be

threshold signed as described in Section 4.2. Pseudo code for the refresh header is

given in Figure 4-3.

If a node receives a refresh header with an epoch smaller than its own epoch, the

node will not start the refresh protocol. Once a node completes the refresh protocol,

it sets its own epoch to the epoch in the refresh header.

38

Chapter 5

Evaluation

In this section, we evaluate how well TSPSS scales in terms of f . Since we use

combinatorial secret sharing, which requires that we split our secret into l =
(

3f+1

f

)

shares, we know that the number of shares is exponential in f . For values of l in

relation to f , see Appendix A.1. To determine how large f can be before TSPSS

becomes impractical, we consider the costs for signing and refreshing. For each, we

consider the cost in terms of the network bandwidth used and the speed with which

the protocol is completed successfully.

All experiments are run over a local area network(LAN). Experiments are run

on two types of machines. Type I machines each have an Intel(R) Pentium(R) 4,

3.06GHz CPU and 2,064MB of RAM. Type II machines each have an Intel Pentium

III, 596MHz CPU with 512MB of RAM. We only have four Type I machines and six

type II machines.

For the rest of this chapter, we will refer to the number of shares each node is

assigned according to the combinatorial secret sharing scheme as l′. l′ = l −
(

3f

f−1

)

because there are l shares and each node is in
(

3f

f−1

)

groups of f nodes.

39

5.1 Threshold Signing

5.1.1 Network Bandwidth Used

For an idea of the network bandwidth used by the signing protocol, we consider the

sizes of the messages and the number of messages sent. For authentication, we use

1024 bit RSA and Rabin signatures. Each sign request (whether it is a quick sign

request or a full sign request) consists of some header information, the message to be

signed, and the requester’s Rabin signature. In the quick sign phase of the protocol, a

request is sent to f +1 nodes. If the full signing protocol is initiated, a request is sent

to each of the 3f + 1 nodes in the system. Each reply has some header information,

the partial RSA signature(s) requested (each of the size of the RSA signature), and

the replier’s Rabin signature. For a quick sign request, only one signature is requested

from each of f + 1 nodes. For a full signing request, l′ signatures are requested.

Thus, the requesting node sends:

(number of receivers) × (header size + message size + Rabin signature size)

⇒ (f + 1) × (24 + message size + 128) bytes (for quick sign)

⇒ (3f + 1) × (24 + message size + 128) bytes (for full signing)

The replier sends:

header size + (number of RSA sigs × RSA sig size) + Rabin sig size

⇒ 24 + (1)128 + 128 bytes (for quick sign)

⇒ 24 + (l′)128 + 128 bytes (for full signing)

For a message of 160 bits (20 bytes), we give the amount of data sent by requesters

and repliers for quick sign and full sign in Table 5.1. We find that although the

bandwidth used by the signing protocol is small for f ≤ 3, the bandwidth increases

quickly and becomes non-trivial f > 3

5.1.2 Speed of Protocol

Now we discuss how long it takes to run the protocol. We measure signing times for

i) when there are no faulty nodes and ii) when there are f faulty nodes and one of

40

f Requester (quick) Requester (full) Replier (quick) Replier (full)

1 624 1,248 280 538
2 936 2,184 280 2,072
3 1,248 3,120 280 10,904
4 1,560 4,056 280 63,512

Table 5.1: Number of bytes sent by signature requesters and repliers during the quick
sign phase of the signing protocol and the full sign phase of the signing protocol,
based on calculations.

f Ave Trial Time Std Dev Ave Time per Signature

1 16,053 12 161
2 17,562 349 176
3 17,645 85 176

Table 5.2: Signing Times (in msec) without Failures

the nodes chosen for a quick sign is faulty. For each f and for both (i) and (ii), we

run 3 trials of 100 signatures each. We use one Type II machine for each of the first

2f nodes, and one Type I machine for each of the next f + 1 nodes. We use this set

up because the speed of a quick sign depends on the first f + 1 machines and the

speed of the full signing protocol is determined by the (2f + 1)th fastest node. Thus,

the quick sign is carried out by the slower machines and the full sign time is also

determined by the speed of the slower machines, making the two times comparable.

Since the proportion of fast to slow machines is the same for each f , the signing times

for different values of f are comparable.

When there are no failed nodes, the quick sign phase of the hybrid signing scheme

finishes successfully. We run 10 trials each with 100 signatures. We give the statistics

for the times measured in Table 5.2. We find that the average time to finish one

signature if the quick sign phase succeed is less than 200 msec for f ≤ 3. Since each

of the f + 1 chosen nodes adds its shares together (a cheap calculation in terms of

computation time) and performs one exponentiation, the quick sign times are similar

for the different values of f .

When there are f failures, with at least one of the faulty nodes being one of the

f +1 nodes chosen for a quick sign, the quick sign does not complete successfully. We

41

f Ave Trial Time Std Dev Ave Time per Signature

1 53,893 1,992 5,389
2 72,903 1,259 7,290
3 131,750 1,697 13,175

Table 5.3: Signing Times (in msec) with f Failures

run 10 trials each with 10 signatures. In our trials, the behavior of a faulty node is

that it does not reply to sign requests. Nodes that do not reply cause the maximum

delay in completing the signing protocol because the requester has to wait for a set

amount of time before starting the full signing protocol. For our trials, the requester

waits 5 seconds for quick sign replies, then initiates the full signing protocol if the

quick sign did not succeed during those 5 seconds. When full signing is triggered, the

amount of time it takes to finish a signing protocol increases significantly with the

value of f . We give the statistics for signing times with failures in Table 5.3.

To determine how much work the repliers in a full signing protocol are doing, we

run some experiments to see how long it takes to produce one partial RSA signature

with one subshare. Recall that our subshares are random numbers. Thus, we generate

100 random numbers in the same size range as our subshares. Then, we run 10 trial,

each generating a partial RSA signature for each of the 100 random numbers we

generated. We find that the average trial time is 8,104 msecs and the standard

deviation is 2.51. Thus, the average time per partial signature is 81.04 msec. We

show what the computation time for each receiver node is base on the number of

shares each node has for the different values of f in Table 5.4. We find that most of

the time for a full signing protocol is accounted for by the 5 seconds spent waiting for

quick sign replies and the time the receivers spend in calculating partial signatures

for the shares they hold.

We give a summary of what the signing times should be measuring, keeping in

mind that the network round-trip times (RTT’s) for our experiments are very small

since all of our nodes are in a LAN.

For a quick sign, the amount of time it takes to complete the protocol consists of:

1 RTT to establish TCP connections

42

f l′ Time Spent Generating Signatures

1 3 243.12
2 15 1,216
3 84 6,807
4 495 40,114

Table 5.4: Amount of time each replier spends computing partial signatures in a full
signing protocol, assuming each partial signature takes 385.75 ms to compute.

+ 1 RTT to send requests and receive replies

+ Time for the each node to add together responsible shares and generate 1 sig-

nature

+ Time for requester to put signatures together

For the hybrid signing scheme, the worse case time consists of:

1 RTT to establish TCP connections

+ Amount of time spent waiting for quick sign replies (that, in the worse case,

never came)

+ 1 RTT to send requests and receive replies

+ Time for the fastest 2f +1 correct nodes to each compute one partial signature

for each share they have

+ Time for requester to put signatures together

5.2 Secret Refreshing

5.2.1 Network Bandwidth Used

For an idea of how much network bandwidth the refresh protocol uses, we need to

account for both the data sent by TSPSS nodes and the data sent by the BFT service.

For the bandwidth used by TSPSS nodes, we give the total number of bytes TSPSS

nodes send via TCP in Table 5.5. These numbers do not include the TCP overhead

and they also do not include retransmitted bytes. For the bandwidth used by the

BFT service, we use the model that the amount of bandwidth used per operation is

43

f Old Node New Node

1 19 12
2 309 20
3 11,730 2,880

Table 5.5: Kilobytes sent by TSPSS old nodes and new nodes during the refreshment
protocol

(3f + 1) × (request size) + reply size. This model is reasonable when the request

or reply size is much larger than the BFT protocol overhead, which is true in our

system. For a more precise evaluation of BFT costs, see [1]. One artifact of the

BFT library we are using is that the BFT request and reply sizes are limited to 4KB.

Thus, to read or write more than 4KB to the BFT service requires multiple requests.

Breaking request and replies into smaller messages does not significantly increase the

number of bytes sent by the BFT so we ignore the 4KB limitation for the purposes

of determining the network bandwidth used.

The BFT service supports the following operations: write proofs, node ok,

read proofs, read chosen, and read new witnesses. write proofs and node ok

are write requests. The reply for each is just a confirmation that the operation has oc-

curred, thus the reply message for each is 8 bytes. The request size of write proofs

is the number of proofs (i.e., l × l′) multiplied by the size of each proof (i.e., 128

bytes because that is the size of each RSA signature). The request size of node ok

is 12 bytes. The other operations are read requests, each with request sizes of 12

bytes. The reply size of read proofs is the number of proofs multiplied by the size

of each proof. The reply size of read chosen is (3f + 1)× 4 bytes. The reply size of

read new witnesses is l multiplied by the size of each witness (i.e., 128 bytes again

because that is the size of each RSA signature).

For each of the operations, there is a minimum number of times an operation must

be invoked before the protocol can succeed. If all nodes in the system were correct

then the maximum number of times that each operation can be invoked is correlated

to the number of nodes. A minimum of f + 1 old nodes must write their proofs for

the refresh protocol to complete. A maximum of 3f + 1 correct old nodes can write

44

f Minimum Maximum

1 24 47
2 1,468 3,413
3 87,851 219,513

Table 5.6: Minimum and maximum amount of bandwidth used(in KB) by the BFT
Agreement service, using the model that the number of bytes sent per operation is
(3f+1)× (request size)+ reply size. Note that these numbers represent the bandwidth
used by all BFT nodes, instead of per node

their proofs. A minimum of 2f + 1 new nodes must read proofs and confirm that a

node’s subshares are good for a minimum of f +1 old nodes. The maximum is 3f +1

new nodes for 2f +1 old nodes. A minimum of 2f +1 and a maximum of 3f +1 new

nodes read which nodes’ subshares have been chosen and the witnesses for the new

shares. We give the approximate bandwidth used in Table 5.6.

We see from Tables 5.5 and 5.6 that the amount of network bandwidth used for

f = 1 is very small. The amount of network bandwidth used for f = 2 is arguably

reasonable. The amount network bandwidth used for f = 3 is enormous.

5.2.2 Speed of Protocol

For the refresh protocol, we ran an instance of an old node and a new node on each

machine. We use one Type I machine for each of the first f + 1 old and new nodes

and one Type II machine for each of the next 2f old and new nodes. This setup

makes the refresh times as f increases comparable because one condition for finishing

the refresh protocol is that at least f + 1 correct old nodes must have generated and

sent subshares and proofs.

We measured local refresh times for f = 1 and f = 2. We calculate lower bound

refresh times for f = 3 and f = 4. A local refresh time is measured from the time

a node initiates run vi+1 locally to the time run vi+1 terminates at that node. For

an old node, a run is initiated when it receives a refresh header from the TSPSS

application. The run at that old node terminates when the old node has received

computed message from 2f + 1 or more new nodes. A computed message is sent by

45

each new node once it has computed its new shares and witnesses. For a new node,

a run is initiated when it has first received and verified a refresh header from an old

node. The run terminates locally at that new node when it has received computed

messages from 2f other new nodes.

To avoid the situation where the last f new nodes must always request their shares

from other nodes because they did not have time to finish computing their shares,

our implementation lets new nodes finish verifying the chosen subshares that they

received and computing their shares of the secret before the node considers the run

to be terminated. The advantage of this approach is that the last f new nodes do

not have to request shares when they already have the subshares for computing those

new shares. The disadvantage is that a few slow nodes can lengthen the window of

vulnerability.

One way to prevent a correct but very slow node from unacceptably lengthening

the window of vulnerability is for all nodes to set a timer when they receive computed

messages from at least 2f + 1 new nodes. If they do not have all of their new shares

by the time the timer expires, then they will calculate the new witnesses and end

the run, thereby forgetting all the subshares they received. Then, they request their

shares from the 2f+1 new nodes who sent computed messages. At least f+1 of those

nodes will be correct nodes, and will send the correct shares, which can be verified

against the public witness.

We have not included timers in our implementation. In our experiments, the

absence of a timer that forces slow nodes to end their run can be viewed as a timer

that does not expire before the new nodes finish computing their shares.

We took the refresh times for each node over five runs. Since the start and

termination conditions for new and old nodes differ, we plot them in different graphs.

See Figures 5-1 and 5-2. We ordered the finish times of the nodes in each run. The

graphs show that sometimes a new node will fall behind the other new nodes. Then,

the other new nodes will move on without the last node. In fact, in two runs for f = 2

the last node in each run was so slow (522 sec and 377 sec) that they are not plotted

in Figure 5-2. For the old nodes, some nodes have smaller refresh times because the

46

new nodes will start the refresh protocol as soon as they receive one refresh header

with a valid threshold signature. We start the old nodes by ssh-ing into the work

station to start the refresh protocol. Thus, some old nodes start later than others

and thus have a shorter refresh time. The average refresh time for f = 1 is 14 seconds

for old nodes and 16 seconds for new nodes. The average refresh time for f = 2 is

280 seconds for old nodes and 288 seconds for new nodes.

We give a summary of what the refresh times should be measuring, keeping in

mind that the network round trip and upload times for our experiments are very small

since all of our nodes are in a LAN. Recall that for the implementation of the BFT

agreement service we are using, each BFT request and reply must be smaller than

4KB. Thus, to read or write more than 4KB to the BFT service requires multiple

requests.

The amount of time it takes to finish a run of the refresh protocol consists of:

Time for work done by old nodes (working in parallel):

1 RTT to establish the TCP connections

+ 1 RTT to send the refresh headers

+ Time it takes a node to compute the proofs

+ 2 RTT × number of writes required for writing proofs to BFT

+ Time it takes a node to encrypt the messages for each of the other nodes

+ 1 RTT to send the encrypted subshares

Time for work done by a new node, for each of f + 1 old nodes:

1 RTT × number of reads to get proofs from BFT

+ Time to decrypt subshares

+ Time to check proofs

+ 1 RTT to notify the BFT that the sender’s subshares are ok

Time for computing the shares, once the subshares have been chosen:

47

�

�

�

�

�

���

���

� �

���

���

� � � � � �
	�

�����������

��
��
� ��
�� �� �! �

�� �! �

�� �! �

�� �! �

�� �! �

"

#

$

%&%

%�'

% "

% #

%�$

(%) ' * "
+�,�-.+0/�1�,32

45
67
8 97
:; <�=�> %

<�=�>)

<�=�> '

<�=�> *

<�=�> "

Figure 5-1: Refresh times for 5 runs with f = 1

48

�����

�����

�����

�����

�����

�����

�����

�����

� � 	 � �

���
�����
����

��
��
� ��
�� �� �!#"

�� �! �

�� �! �

�� �! 	

�� �! �

265

27 5

28 5

29 5

30 5

31 5

325

0 2 4 6 8

New Nodes

T
im

e
 (

s
e

c
) R u n 1

R u n 2

R u n 3

R u n 4

R u n 5

Figure 5-2: Refresh times for 5 runs with f = 2

49

1 RTT × number of reads to get which subshares are chosen and the witnesses

for the new shares1 from the BFT service.

+ Time it takes to compute the new shares and witnesses

+ 1 RTT to establish TCP connections, then send computed messages

5.2.3 Extrapolated Lower Bounds

We do not include the refresh time statistics for f = 3 in Tables ?? and ?? because

it takes too long and is too computationally expensive to run the refresh protocol

multiple times for f = 3. We ran the refreshment for f = 3 once on workstations

with some load and it took 3.37 hours to complete.

Since we’re trying to determine the maximum f for which TSPSS is practical,

and the f = 3 case takes so long, we give a lower bound for refresh times based on

the amount of time that computation alone requires. Specifically, we determine the

amount of time required to generate proofs, decrypt the subshares, and check the

proofs for the number of subshares the protocol calls for. Since we use the Rabin

scheme for asymmetric key encryption and decryption, the encryption computations

(i.e., squaring the subshares) take a negligible amount of time. Checking a proof

involves generating the proof from the received subshare and checking whether it

equals the public proof for that subshare.

For Type I machines, we run 10 trials, each performing 500 decryptions and 500

proof generation and checking. For Type II machines, we run 10 trials, each perform-

ing 100 decryptions and 100 proof generations. We give the results in Tables 5.7 and

5.8.

The times for Type I and Type II machines are consistent with the machine

specifications. Type I machines have CPU’s that are five times faster than the Type

II machine CPU’s. For decryption and proof generation, Type I machines are a little

1The TSPSS code could have stored all the proofs and calculated the new witnesses from some of

these proofs. However, since a minority of the proofs generated will ultimately be used to calculate

the new witnesses, it makes sense to discard the proofs after checking the subshares and to retrieve

the new witnesses from the BFT, which stores all the proofs, once the subshares for the new shares

have been chosen.

50

Calculation Type Ave Trial Time Std Dev Ave Time per Subshare

Decrypt 6,052 6.86 12.10
Proof Gen & Check 10,445 18.75 20.98

Table 5.7: Times for decrypting and proof generating and checking for Type I ma-
chines

Calculation Type Ave Trial Time Std Dev Ave Time per Subshare

Decrypting 6,052 6.86 12.10
Proof Chekcing 10,445 18.75 20.98

Table 5.8: Times for decrypting and proof generating and checking for Type II ma-
chines

less than five times faster.

We break the computation time down into i) the time taken by old nodes to gen-

erate proofs and ii) the time taken by new nodes to decrypt and verify those proofs

for f + 1 old nodes. Recall that 2f + 1 new nodes need to verify f + 1 old nodes’

subshares and that we have f + 1 Type I machines each running one old node and

one new node. We expect that the f + 1 old nodes running on Type I machines will

generate proofs and send subshares first, and some new nodes running on Type II

machines are needed to check the subshares. Thus, the computation time for part (i)

is the Type I proof generation time per subshare multiplied by l subshares for each

of l′ shares. The computation time for part (ii) is the Type II decrypt and proof

generation time per subshare multiplied by l′ subshares for each of l′ shares from

f + 1 old nodes. Part (i) and part (ii) times do not overlap and the estimated total

computation time is:

(l × l′× Type I proof generation time per subshare)

+ (l′ × l′ × (f + 1)× Type II decryption and proof generation time per subshare).

Table 5.9 gives lower bound refresh times, based only on encryption, proof gener-

ation, and proof checking with the encryption and proof generation numbers given in

Tables 5.7 and 5.8. These times are smaller than the refresh times we measured.

We find that using f + 1 Type I machines and 2f Type II machines, even the

51

f l l′ Lower Bound with Type I & II

1 4 3 3
2 21 15 112
3 120 84 4,629 (1.3 hours)
4 715 495 199,172 (2.3 days)

Table 5.9: Extrapolated lower bound refresh times (in sec) based on the time it takes
for old nodes to generate proofs and for new nodes to decrypt and check proofs, using
f + 1 Type I machines and 2f Type II machines.

f Lower Bound with Type I

1 1
2 29
3 1,141 (0.5 hour)
4 47,817 (13.3 hours)

Table 5.10: Extrapolated lower bound refresh times (in sec) based on the time it takes
for old nodes to generate proofs and for new nodes to decrypt and check proofs, using
all Type I machines.

refresh time based only on encryption and proof generation times is unacceptably

long for f > 2. For an idea of how much better the times would be with all Type I

machines, we calculate such a lower bound give them in Table 5.10.

To determine whether a better implementation can complete the protocol within

an acceptable amount of time, we analyze the optimistic scenario where we assume

all nodes are correct. The optimistic scenario is that all nodes are correct and thus

redundancy in the system is not needed. If all nodes were correct, we would need f+1

old nodes to generate, encrypt, and send subshares, with only one node generating

subshares for each of share. Then 2f +1 new nodes would need to decrypt and check

the proofs for all of the shares.

Thus, in the optimistic scenario, the part (i) computation time is the Type I proof

generation time per subshare multiplied by l subshares for each of l/(3f + 1) shares.

The part (ii) computation time is the Type II decrypt and proof generation time

per subshare multiplied by l′ subshares for each of l shares. I.e., (l × l/(3f + 1)×

Type I proof generation time per subshare) + (l′ × l× Type II decryption and proof

52

f Optimistic Lower Bound with Type I

1 .5
2 12
3 363 (6 min)
4 12,499 (3.5 hours)

Table 5.11: Extrapolated lower bound refresh times (in sec) based on the optimistic
assumption that all nodes are correct and the time it takes for old nodes to generate
proofs and for new nodes to decrypt and check proofs, using all Type I machines.

generation time per subshare). We calculate and give the results for the optimistic

scenario, using all Type I machines in Table 5.11.

Although the times do improve dramatically if we make optimistic assumptions,

the these times are still unacceptably long for f ≥ 3. We conclude that the exponen-

tial (with respect to f) number of times that expensive operations like exponentiation

and decryption must be performed prohibits this scheme from being practical even

for small values of f like 3.

53

54

Chapter 6

Conclusion

This thesis describes TSPSS, a threshold signing and proactive secret sharing protocol

to address the authentication needs of reconfigurable Byzantine fault tolerant services

such as Rosebud [10] and Pond [9]. We based the proactive secret sharing part of

TSPSS on APSS [14], improving on the APSS work in two aspects: 1) Our refresh

protocol works across 2 sets of servers, with one set of nodes transferring their col-

lective knowledge of the secret to another set of servers that previously did not know

about the secret. 2) Where agreement is needed in the protocol, our refresh protocol

uses the Castro and Liskov BFT replication algorithm to achieve agreement.

Both TSPSS and APSS use combinatorial secret sharing which requires an ex-

ponential number of shares in f . The amount of computation time and bandwidth

required to carry out the sign and refresh protocols corresponds to the number shares

in the system.

The redundancy in the combinatorial secret sharing construction is useful. The

property that any f+1 nodes have all the shares is useful for recovering shares because

if 2f + 1 new nodes have received and verified their subshares, then we know that at

least f +1 of those nodes are good and at least one correct node has each new share.

If there are correct nodes that do not have their new shares, they can recover their

shares from the 2f +1 nodes. Since at least f +1 of those nodes are correct, the new

node will receive at least one good copy for each of the shares it should have and it

can check to see if a share is good using the corresponding witness.

55

The property that 2f + 1 nodes hold each share is useful for signing because it

allows us to use the full signing protocol instead of having to repeat the quick sign

scheme with different groups of f+1 nodes until one succeeds. The number of possible

groups of f + 1 nodes when choosing from 3f + 1 nodes is exponential in f . Thus,

many groups may need to be tried before a successful signature is generated.

However, the price of these useful properties is the exponentially increasing cost

of TSPSS. TSPSS performs well for f = 1. Its performance is arguable reasonable for

f = 2. It takes too much computation power and too much network bandwidth for

f ≥ 3, which translates into requiring too much time before the protocol completes.

We find that the expensive operations TSPSS requires are the RSA partial signature

generation during threshold signing and decryption using the Rabin asymmetric key

cryptosystem and the exponentiations required for generating proofs for the subshares

during secret refreshing. Inherent to proactive secret sharing using combinatorial

secret sharing is that the number of shares is exponential in f . The number of RSA

partial signatures that must be generated is directly related to the number of shares

in the system. The number of encryptions and the number of proof generations is

proportional to the number of shares squared. Thus TSPSS requires and exponentially

increasing number of expensive operations to be performed and an exponentially

increasing amount of bandwidth as f increase.

Assuming that Moore’s Law continues to hold, we can see that for f ≤ 3, refresh

times for TSPSS will decrease to the point of being acceptable in the next ten years.

However, a better solution is needed because ten years is a long time and some systems

need f > 3.

This thesis has described a threshold signing and proactive secret sharing protocol

intended for use by Byzantine fault tolerant services. We implemented and evaluated

the cost of the protocol described. We identified the expensive operations in the pro-

tocol and quantified the practical costs of a secret sharing scheme with an exponential

number of shares in f .

56

Appendix A

f and the Number of Shares

Table A.1 gives the number of shares in the system (l) and the number of shares each

node holds (l′) in relation to f .

f 3f + 1 l =
(

3f+1
f

)

l′ =
(

3f
2f

)

1 4 4 3

2 7 21 15

3 10 120 84

4 13 715 495

Table A.1: f , 3f + 1, l, and l′

57

58

Bibliography

[1] Miguel Castro. Practical byzantine fault tolerance. Technical report, MIT, Jan-

uary 2001.

[2] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In OSDI:

Symposium on Operating Systems Design and Implementation. USENIX Associ-

ation, Co-sponsored by IEEE TCOS and ACM SIGOPS, 1999.

[3] P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In

Proc. 28th IEEE Symp. on Foundations of Comp. Science, pages 427–438. IEEE,

1987.

[4] The gnu mp library. http://www.gnu.org/software/gmp/manual/html node/index.html#Top.

[5] Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. Proactive

secret sharing or: How to cope with perpetual leakage. In Proceedings of the 15th

Annual International Cryptology Conference on Advances in Cryptology, pages

339–352. Springer-Verlag, 1995.

[6] M. Ito, A. Saito, and T. Nishizeki. Secret sharing scheme realizing general access

structure. In IEEE Globecom, pages 99–102. IEEE, 1987.

[7] Stanislaw Jarecki. Proactive secret sharing and public key cryptosystems. Mas-

ter’s thesis, Massachusetts Institute of Technology, Cambridge, MA, September

1993.

[8] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.

In Communications of the ACM, volume 21 (7), pages 558–565, July 1978.

59

[9] Sean Rhea, Patrick Eaton, Dennis Geels, Hakim Weatherspoon, Ben Zhao, and

John Kubiatowicz. Pond: the oceanstore prototype. In Proceedings of the Con-

ference on File and Storage Technologies, 2003.

[10] Rodrigues Rodrigo and Liskov Barbara. Rosebud: A scalable byzantine-fault-

tolerant storage architecture. In Proceedings of the 18th ACM Symposium on

Operating System Principles, 2003.

[11] Fred Schneider. Implementing fault-tolerant services using the state machin

approach: A tutorial. ACM Computing Surveys, 22(4):299–319, December 1990.

[12] The self-certifying file system. http://www.fs.net/sfswww/.

[13] Adi Shamir. How to share a secret. Commun. ACM, 22 (11):612–613, 1979.

[14] Lidong Zhou, Fred B. Schneider, and Robbert Van Renesse. Apss: Proactive

secret sharing in asynchronous systems. Talk at Fanstord University (this is a

full UNPUBLISHED entry), October 2002.

60

